-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmain_lena.py
268 lines (210 loc) · 8.94 KB
/
main_lena.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import os
import torch
import torch.nn as nn
from torch.autograd import Variable
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
import scipy.io as sio
import scipy.misc
## network definition
class DLADMMNet(nn.Module):
def __init__(self, m, n, d, batch_size, A, Z0, E0, L0, layers):
super(DLADMMNet, self).__init__()
self.m = m
self.n = n
self.d = d
self.batch_size = batch_size
self.A = A.cuda()
self.Z0 = Z0.cuda()
self.E0 = E0.cuda()
self.L0 = L0.cuda()
self.layers = layers
self.beta1 = nn.ParameterList()
self.beta2 = nn.ParameterList()
self.fc = nn.ModuleList()
for k in range(self.layers):
self.beta1.append(nn.Parameter(torch.ones(self.m, self.batch_size, dtype=torch.float32)))
self.beta2.append(nn.Parameter(torch.ones(self.m, self.batch_size, dtype=torch.float32)))
self.fc.append(nn.Linear(self.m, self.d, bias = False))
self.active_para = torch.tensor(0.025, dtype=torch.float32)
self.active_para1 = torch.tensor(0.06, dtype=torch.float32)
for m in self.modules():
if isinstance(m, nn.Linear):
#nn.init.kaiming_normal_(m.weight, mode='fan_out')
#m.weight.data.normal_(0, 1/20)
m.weight = torch.nn.Parameter(self.A.t() + (1e-3)*torch.randn_like(self.A.t()))
#m.weight = torch.nn.Parameter(self.A.t())
def self_active(self, x, thershold):
return F.relu(x - thershold) - F.relu(-1.0 * x - thershold)
def forward(self, x):
#X = x.view(-1, 28*28)
X = x
T = list()
Var = list()
Z = list()
E = list()
L = list()
for k in range(self.layers):
if k == 0 :
T.append(self.A.mm(self.Z0) + self.E0 - X)
Var.append(self.L0 + self.beta1[k].mul(T[-1]))
Z.append(self.self_active(self.Z0 - self.fc[k](Var[-1].t()).t(), self.active_para))
E.append(self.self_active(X - self.A.mm(Z[-1]) - self.beta2[k].mul(self.L0), self.active_para1))
T.append(self.A.mm(Z[-1]) + E[-1] - X)
L.append(self.L0 + self.beta1[k].mul(T[-1]))
# T1 = self.A.mm(self.Z0) + self.E0 - X
# Var1 = self.L0 + self.beta1_1.mul(T1)
# Z1 = self.self_active(self.Z0 - self.fc1(Var1.t()).t(), self.active_para)
# E1 = self.self_active(X - self.A.mm(Z1) - self.beta1_2.mul(self.L0), self.active_para1)
# T2 = self.A.mm(Z1) + E1 - X
# L1 = self.L0 + self.beta1_1.mul(T2)
else :
Var.append(L[-1] + self.beta1[k].mul(T[-1]))
Z.append(self.self_active(Z[-1] - self.fc[k](Var[-1].t()).t(), self.active_para))
E.append(self.self_active(X - self.A.mm(Z[-1]) - self.beta2[k].mul(L[-1]), self.active_para1))
T.append(self.A.mm(Z[-1]) + E[-1] - X)
L.append(L[-1] + self.beta1[k].mul(T[-1]))
# Z2 = self.self_active(Z1 - self.fc2(Var2.t()).t(), self.active_para)
# E2 = self.self_active(X - self.A.mm(Z2) - self.beta2_2.mul(L1), self.active_para1)
# T3 = self.A.mm(Z2) + E2 - X
# L2 = L1 + self.beta2_1.mul(T3)
return Z, E, L
def name(self):
return "DLADMMNet"
# other functions
def trans2image(img):
# img 256 x 1024
img = img.cpu().data.numpy()
new_img = np.zeros([512, 512])
count = 0
for ii in range(0, 512, 16):
for jj in range(0, 512, 16):
new_img[ii:ii+16,jj:jj+16] = np.transpose(np.reshape(img[:, count],[16,16]))
count = count+1
return new_img
def l2_normalize(inputs):
[batch_size, dim] = inputs.shape
inputs2 = torch.mul(inputs, inputs)
norm2 = torch.sum(inputs2, 1)
root_inv = torch.rsqrt(norm2)
tmp_var1 = root_inv.expand(dim,batch_size)
tmp_var2 = torch.t(tmp_var1)
nml_inputs = torch.mul(inputs, tmp_var2)
return nml_inputs
def l2_col_normalize(inputs):
[dim1, dim2] = inputs.shape
inputs2 = np.multiply(inputs, inputs)
norm2 = np.sum(inputs2, 0)
root = np.sqrt(norm2)
root_inv = 1/root
tmp_var1 = np.tile(root_inv,dim1)
tmp_var2 = tmp_var1.reshape(dim1, dim2)
nml_inputs = np.multiply(inputs, tmp_var2)
return nml_inputs
def calc_PSNR(x1, x2):
x1 = x1 * 255.0
x2 = x2 * 255.0
mse = F.mse_loss(x1, x2)
psnr = -10 * torch.log10(mse) + torch.tensor(48.131)
return psnr
def dual_gap(x, alpha):
out = F.softplus(x - alpha) + F.softplus(- x - alpha)
return out
np.random.seed(1126)
os.environ["CUDA_VISIBLE_DEVICES"]="7"
m, d, n = 256, 512, 10000
n_test = 1024
batch_size = 20
layers = 15
alpha = 0.45
num_epoch = 100
use_cuda = torch.cuda.is_available()
print('==>>> batch size: {}'.format(batch_size))
print('==>>> total trainning batch number: {}'.format(n//batch_size))
print('==>>> total testing batch number: {}'.format(n_test//batch_size))
img_data = sio.loadmat('lena_pepper_01.mat')
A_ori = img_data['D']
A_ori = A_ori.astype(np.float32)#*(1.0/18.0)
X = img_data['train_x'].astype(np.float32)
X = X.T
X_ts = img_data['test_x'].astype(np.float32)
X_ts = X_ts.T
X_gt = img_data['gt_x'].astype(np.float32)
X_gt = X_gt.T
# init parameters
Z0 = 1.0 /d * torch.rand(d, batch_size, dtype=torch.float32)
E0 = torch.zeros(m, batch_size, dtype=torch.float32)
L0 = torch.zeros(m, batch_size, dtype=torch.float32)
A_tensor = torch.from_numpy(A_ori)
model = DLADMMNet(m=m, n=n, d=d, batch_size=batch_size, A=A_tensor, Z0=Z0, E0=E0, L0=L0, layers=layers)
A_tensor = A_tensor.cuda()
if use_cuda:
model = model.cuda()
print(model)
criterion = nn.MSELoss()
index_loc = np.arange(10000)
ts_index_loc = np.arange(1000)
psnr_value = 0
best_pic = torch.zeros(256,1024)
for epoch in range(num_epoch):
print('---------------------------training---------------------------')
learning_rate = 0.0002 * 0.5 ** (epoch // 30)
print('learning rate of this epoch {:.8f}'.format(learning_rate))
optimizer = optim.Adam(model.parameters(), lr=learning_rate) if epoch<20 else optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9)
np.random.shuffle(index_loc)
for j in range(n//batch_size):
optimizer.zero_grad()
address = index_loc[np.arange(j*batch_size,(j+1)*batch_size)]
input_bs = X[:, address]
input_bs = torch.from_numpy(input_bs)
input_bs_var = torch.autograd.Variable(input_bs.cuda())
[Z, E, L] = model(input_bs_var)
loss = list()
total_loss = 0
for k in range(layers):
loss.append(alpha * torch.mean(torch.abs(Z[k])) + torch.mean(torch.abs(E[k])) + torch.mean(dual_gap(torch.mm(A_tensor.t(), L[k]), alpha)) + torch.mean(dual_gap(L[k], 1)) + torch.mean(L[k] * input_bs_var))
total_loss = total_loss + loss[-1]
total_loss.backward()
optimizer.step()
if (j) % 100 == 0:
# print('==>>> epoch: {},loss10: {:.6f}'.format(epoch, loss10))
print('==>> epoch: {} [{}/{}]'.format(epoch+1, j, n//batch_size))
for k in range(layers):
print('loss{}:{:.3f}'.format(k + 1, loss[k]), end=' ')
print(" ")
torch.save(model.state_dict(), model.name())
print('---------------------------testing---------------------------')
mse_value = torch.zeros(layers)
for j in range(n_test//batch_size):
input_bs = X_ts[:, j*batch_size:(j+1)*batch_size]
input_bs = torch.from_numpy(input_bs)
input_bs_var = torch.autograd.Variable(input_bs.cuda())
[Z, E, L] = model(input_bs_var)
input_gt = X_gt[:, j*batch_size:(j+1)*batch_size]
input_gt = torch.from_numpy(input_gt)
input_gt_var = torch.autograd.Variable(input_gt.cuda())
for jj in range(layers):
mse_value[jj] = mse_value[jj] + F.mse_loss(255 * input_gt_var.cuda(), 255 * torch.mm(A_tensor, Z[jj]))
mse_value = mse_value / (n_test//batch_size)
psnr = -10 * torch.log10(mse_value) + torch.tensor(48.131)
for jj in range(layers):
if(psnr_value < psnr[jj]):
psnr_value = psnr[jj]
for jjj in range(n_test//batch_size):
input_bs = X_ts[:, jjj*batch_size:(jjj+1)*batch_size]
input_bs = torch.from_numpy(input_bs)
input_bs_var = torch.autograd.Variable(input_bs.cuda())
[Z, E, L] = model(input_bs_var)
best_pic[:, jjj*batch_size:(jjj+1)*batch_size] = 255* torch.mm(A_tensor, Z[jj])
# print('==>>> epoch: {}, psnr1: {:.6f}'.format(epoch, psnr[0]))
print('==>> epoch: {}'.format(epoch))
for k in range(layers):
print('PSNR{}:{:.3f}'.format(k+1, psnr[k]), end=' ')
print(" ")
print('******Best PSNR:{:.3f}'.format(psnr_value))
# save recovered image
img = trans2image(best_pic)
scipy.misc.imsave('lena_01.jpg', img)