-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathac - 备份.py
172 lines (164 loc) · 6.03 KB
/
ac - 备份.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import torch
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions import Categorical
import numpy as np
from multiprocessing import Process, Pipe
import argparse
import gym
# 建立Actor和Critic网络
class ActorCritic(nn.Module):
''' A2C网络模型,包含一个Actor和Critic
'''
def __init__(self, input_dim, output_dim, hidden_dim):
super(ActorCritic, self).__init__()
self.critic = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, 1)
)
self.actor = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, output_dim),
nn.Softmax(dim=1),
)
def forward(self, x):
value = self.critic(x)
probs = self.actor(x)
dist = Categorical(probs)
return dist, value
class A2C:
''' A2C算法
'''
def __init__(self,n_states,n_actions,cfg) -> None:
self.gamma = cfg.gamma
self.device = cfg.device
self.model = ActorCritic(n_states, n_actions, cfg.hidden_size).to(self.device)
self.optimizer = optim.Adam(self.model.parameters())
def compute_returns(self,next_value, rewards, masks):
R = next_value
returns = []
for step in reversed(range(len(rewards))):
R = rewards[step] + self.gamma * R * masks[step]
returns.insert(0, R)
return returns
def make_envs(env_name):
def _thunk():
env = gym.make(env_name)
env.reset(seed=2)
return env
return _thunk
def test_env(env,model,vis=False):
state,_ = env.reset()
if vis: env.render()
done = False
total_reward = 0
while not done:
state = torch.FloatTensor(state).unsqueeze(0).to(cfg.device)
dist, _ = model(state)
# print("test len: ", len(dist.sample().cpu().numpy()))
next_state, reward, done, _,_ = env.step(dist.sample().cpu().numpy()[0])
state = next_state
if vis: env.render()
total_reward += reward
return total_reward
def compute_returns(next_value, rewards, masks, gamma=0.99):
R = next_value
returns = []
for step in reversed(range(len(rewards))):
R = rewards[step] + gamma * R * masks[step]
returns.insert(0, R)
return returns
def train(cfg,envs):
print('Start training!')
print(f'Env:{cfg.env_name}, Algorithm:{cfg.algo_name}, Device:{cfg.device}')
env = gym.make(cfg.env_name) # a single env
env.reset(seed=10)
n_states = envs.observation_space.shape[0]
n_actions = envs.action_space.n
model = ActorCritic(n_states, n_actions, cfg.hidden_dim).to(cfg.device)
optimizer = optim.Adam(model.parameters())
step_idx = 0
test_rewards = []
test_ma_rewards = []
state = envs.reset() # 这里!
while step_idx < cfg.max_steps:
log_probs = []
values = []
rewards = []
masks = []
entropy = 0
# rollout trajectory
for _ in range(cfg.n_steps):
state = torch.FloatTensor(state).to(cfg.device)
dist, value = model(state)
action = dist.sample()
# print("train len: ", len(dist.sample().cpu().numpy()))
next_state, reward, done, _ = envs.step(action.cpu().numpy())
print("next_state: ", next_state)
print("done: ",done, type(done))
log_prob = dist.log_prob(action)
entropy += dist.entropy().mean()
log_probs.append(log_prob)
values.append(value)
rewards.append(torch.FloatTensor(reward).unsqueeze(1).to(cfg.device))
masks.append(torch.FloatTensor(1 - done).unsqueeze(1).to(cfg.device))
state = next_state
step_idx += 1
if step_idx % 200 == 0:
test_reward = np.mean([test_env(env,model) for _ in range(10)])
print(f"step_idx:{step_idx}, test_reward:{test_reward}")
test_rewards.append(test_reward)
if test_ma_rewards:
test_ma_rewards.append(0.9*test_ma_rewards[-1]+0.1*test_reward)
else:
test_ma_rewards.append(test_reward)
# plot(step_idx, test_rewards)
next_state = torch.FloatTensor(next_state).to(cfg.device)
_, next_value = model(next_state)
returns = compute_returns(next_value, rewards, masks)
log_probs = torch.cat(log_probs)
returns = torch.cat(returns).detach()
values = torch.cat(values)
advantage = returns - values
actor_loss = -(log_probs * advantage.detach()).mean()
critic_loss = advantage.pow(2).mean()
loss = actor_loss + 0.5 * critic_loss - 0.001 * entropy
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('Finish training!')
return test_rewards, test_ma_rewards
import matplotlib.pyplot as plt
import seaborn as sns
def plot_rewards(rewards, ma_rewards, cfg, tag='train'):
sns.set()
plt.figure() # 创建一个图形实例,方便同时多画几个图
plt.title("learning curve on {} of {} for {}".format(
cfg.device, cfg.algo_name, cfg.env_name))
plt.xlabel('epsiodes')
plt.plot(rewards, label='rewards')
plt.plot(ma_rewards, label='ma rewards')
plt.legend()
plt.show()
import easydict
from common.multiprocessing_env import SubprocVecEnv
if __name__ == '__main__':
cfg = easydict.EasyDict({
"algo_name": 'A2C',
"env_name": 'CartPole-v0',
"n_envs": 8,
"max_steps": 20000,
"n_steps":5,
"gamma":0.99,
"lr": 1e-3,
"hidden_dim": 256,
"device":torch.device(
"cuda" if torch.cuda.is_available() else "cpu")
})
envs = [make_envs(cfg.env_name) for i in range(cfg.n_envs)]
envs = SubprocVecEnv(envs)
rewards,ma_rewards = train(cfg,envs)
plot_rewards(rewards, ma_rewards, cfg, tag="train") # 画出结果