-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathattack_methods.py
693 lines (610 loc) · 25.1 KB
/
attack_methods.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
import torch
import torch.nn as nn
import scipy.stats as st
import numpy as np
import torchvision
from PIL import Image
import random
import time
import math
def norm_grads(grads, frame_level=True):
# frame level norm
# clip level norm
assert len(grads.shape) == 5 and grads.shape[2] == 32
if frame_level:
norm = torch.mean(torch.abs(grads), [1,3,4], keepdim=True)
else:
norm = torch.mean(torch.abs(grads), [1,2,3,4], keepdim=True)
# norm = torch.norm(grads, dim=[1,2,3,4], p=1)
return grads / norm
class Attack(object):
"""
# refer to https://github.com/Harry24k/adversarial-attacks-pytorch
Base class for all attacks.
.. note::
It automatically set device to the device where given model is.
It temporarily changes the model's training mode to `test`
by `.eval()` only during an attack process.
"""
def __init__(self, name, model):
r"""
Initializes internal attack state.
Arguments:
name (str) : name of an attack.
model (torch.nn.Module): model to attack.
"""
self.attack = name
self.model = model
self.model_name = str(model).split("(")[0]
self.training = model.training
self.device = next(model.parameters()).device
self._targeted = 1
self._attack_mode = 'default'
self._return_type = 'float'
self._target_map_function = lambda images, labels:labels
self.mean = [0.485, 0.456, 0.406]
self.std = [0.229, 0.224, 0.225]
def forward(self, *input):
r"""
It defines the computation performed at every call (attack forward).
Should be overridden by all subclasses.
"""
raise NotImplementedError
def set_attack_mode(self, mode, target_map_function=None):
r"""
Set the attack mode.
Arguments:
mode (str) : 'default' (DEFAULT)
'targeted' - Use input labels as targeted labels.
'least_likely' - Use least likely labels as targeted labels.
target_map_function (function) :
"""
if self._attack_mode is 'only_default':
raise ValueError("Changing attack mode is not supported in this attack method.")
if (mode is 'targeted') and (target_map_function is None):
raise ValueError("Please give a target_map_function, e.g., lambda images, labels:(labels+1)%10.")
if mode=="default":
self._attack_mode = "default"
self._targeted = 1
self._transform_label = self._get_label
elif mode=="targeted":
self._attack_mode = "targeted"
self._targeted = -1
self._target_map_function = target_map_function
self._transform_label = self._get_target_label
elif mode=="least_likely":
self._attack_mode = "least_likely"
self._targeted = -1
self._transform_label = self._get_least_likely_label
else:
raise ValueError(mode + " is not a valid mode. [Options : default, targeted, least_likely]")
def set_return_type(self, type):
r"""
Set the return type of adversarial images: `int` or `float`.
Arguments:
type (str) : 'float' or 'int'. (DEFAULT : 'float')
"""
if type == 'float':
self._return_type = 'float'
elif type == 'int':
self._return_type = 'int'
else:
raise ValueError(type + " is not a valid type. [Options : float, int]")
def save(self, save_path, data_loader, verbose=True):
r"""
Save adversarial images as torch.tensor from given torch.utils.data.DataLoader.
Arguments:
save_path (str) : save_path.
data_loader (torch.utils.data.DataLoader) : data loader.
verbose (bool) : True for displaying detailed information. (DEFAULT : True)
"""
self.model.eval()
image_list = []
label_list = []
correct = 0
total = 0
total_batch = len(data_loader)
for step, (images, labels) in enumerate(data_loader):
adv_images = self.__call__(images, labels)
image_list.append(adv_images.cpu())
label_list.append(labels.cpu())
if self._return_type == 'int':
adv_images = adv_images.float()/255
if verbose:
outputs = self.model(adv_images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels.to(self.device)).sum()
acc = 100 * float(correct) / total
print('- Save Progress : %2.2f %% / Accuracy : %2.2f %%' % ((step+1)/total_batch*100, acc), end='\r')
x = torch.cat(image_list, 0)
y = torch.cat(label_list, 0)
torch.save((x, y), save_path)
print('\n- Save Complete!')
self._switch_model()
def _transform_video(self, video, mode='forward'):
r'''
Transform the video into [0, 1]
'''
dtype = video.dtype
mean = torch.as_tensor(self.mean, dtype=dtype, device=self.device)
std = torch.as_tensor(self.std, dtype=dtype, device=self.device)
if mode == 'forward':
# [-mean/std, mean/std]
video.sub_(mean[:, None, None, None]).div_(std[:, None, None, None])
elif mode == 'back':
# [0, 1]
video.mul_(std[:, None, None, None]).add_(mean[:, None, None, None])
return video
def _transform_label(self, images, labels):
r"""
Function for changing the attack mode.
"""
return labels
def _get_label(self, images, labels):
r"""
Function for changing the attack mode.
Return input labels.
"""
return labels
def _get_target_label(self, images, labels):
r"""
Function for changing the attack mode.
Return input labels.
"""
return self._target_map_function(images, labels)
def _get_least_likely_label(self, images, labels):
r"""
Function for changing the attack mode.
Return least likely labels.
"""
outputs = self.model(images)
_, labels = torch.min(outputs.data, 1)
labels = labels.detach_()
return labels
def _to_uint(self, images):
r"""
Function for changing the return type.
Return images as int.
"""
return (images*255).type(torch.uint8)
def _switch_model(self):
r"""
Function for changing the training mode of the model.
"""
if self.training:
self.model.train()
else:
self.model.eval()
def __str__(self):
info = self.__dict__.copy()
del_keys = ['model', 'attack']
for key in info.keys():
if key[0] == "_" :
del_keys.append(key)
for key in del_keys:
del info[key]
info['attack_mode'] = self._attack_mode
if info['attack_mode'] == 'only_default' :
info['attack_mode'] = 'default'
info['return_type'] = self._return_type
return self.attack + "(" + ', '.join('{}={}'.format(key, val) for key, val in info.items()) + ")"
def __call__(self, *input, **kwargs):
self.model.eval()
images = self.forward(*input, **kwargs)
self._switch_model()
if self._return_type == 'int':
images = self._to_uint(images)
return images
class TemporalTranslation(Attack):
'''
TT and TT-MI
model: a video model.
params = {
'kernlen': shift length. int.
'momentum': True or False.
'move_type': three shifting strategies. adj or remote or random.
'kernel_mode': three strategies to generate W. gaussian or linear or uniform.}
delay: hyper-parameter in momentum iterm.
'''
def __init__(self, model, params, epsilon=16/255, steps=10, delay=1.0):
super(TemporalTranslation, self).__init__("TemporalTranslation", model)
self.epsilon = epsilon
self.steps = steps
self.step_size = self.epsilon / self.steps
self.delay = delay
for name, value in params.items():
setattr(self, name, value)
self.frames = 32
self.cycle_move_list = self._move_info_generation()
if self.kernel_mode == 'gaussian':
kernel = self._initial_kernel_gaussian(self.kernlen).astype(np.float32) # (self.kernlen)
elif self.kernel_mode == 'linear':
kernel = self._initial_kernel_linear(self.kernlen).astype(np.float32) # (self.kernlen)
elif self.kernel_mode == 'uniform':
kernel = self._initial_kernel_uniform(self.kernlen).astype(np.float32) # (self.kernlen)
self.kernel = torch.from_numpy(np.expand_dims(kernel, 0)).to(self.device) # 1,self.kernlen
def _move_info_generation(self):
max_move = int((self.kernlen - 1) / 2)
lists = [i for i in range(-max_move, max_move+1)]
return lists
def _initial_kernel_linear(self, kernlen):
k = int((kernlen - 1) / 2)
kern1d = []
for i in range(k+1):
kern1d.append(1 - i / (k+1))
kern1d = np.array(kern1d[::-1][:-1] + kern1d)
kernel = kern1d / kern1d.sum()
return kernel
def _initial_kernel_uniform(self, kernlen):
kern1d = np.ones(kernlen)
kernel = kern1d / kern1d.sum()
return kernel
def _initial_kernel_gaussian(self, kernlen):
assert kernlen%2 == 1
k = (kernlen - 1) /2
sigma = k/3
k = int(k)
def calculte_guassian(x, sigma):
return (1/(sigma*np.sqrt(2*np.pi)) * np.math.exp(-(x**2)/(2* (sigma**2))))
kern1d = []
for i in range(-k, k+1):
kern1d.append(calculte_guassian(i, sigma))
assert len(kern1d) == kernlen
kern1d = np.array(kern1d)
kernel = kern1d / kern1d.sum()
return kernel
def _conv1d_frame(self, grads):
'''
grads: D, N, C, T, H, W
'''
# cycle padding for grads
D,N,C,T,H,W = grads.shape
grads = grads.reshape(D, -1)
grad = torch.matmul(self.kernel, grads)
grad = grad.reshape(N,C,T,H,W)
return grad
def _cycle_move(self, adv_videos, cycle_move):
if cycle_move < 0:
direction = -1
else:
direction = 1
cycle_move = abs(cycle_move)
cycle_move = cycle_move % self.frames
new_videos = torch.zeros_like(adv_videos)
for i in range(self.frames):
ori_ind = i
new_ind = (ori_ind + direction * cycle_move) % self.frames
new_videos[:,:,new_ind] = adv_videos[:,:,ori_ind]
return new_videos
def _cycle_move_remote(self, adv_videos, cycle_move):
if cycle_move < 0:
direction = -1
else:
direction = 1
cycle_move = abs(cycle_move)
if cycle_move == 0:
cycle_move = cycle_move % self.frames
else:
cycle_move = (cycle_move + (int(self.frames/2)-1)) % self.frames
new_videos = torch.zeros_like(adv_videos)
for i in range(self.frames):
ori_ind = i
new_ind = (ori_ind + direction * cycle_move) % self.frames
new_videos[:,:,new_ind] = adv_videos[:,:,ori_ind]
return new_videos
def _cycle_move_random(self, adv_videos, cycle_move):
if cycle_move < 0:
direction = -1
else:
direction = 1
# cycle_move = abs(cycle_move)
if cycle_move == 0:
cycle_move = cycle_move % self.frames
else:
cycle_move = random.randint(0, 100) % self.frames
# cycle_move = (cycle_move + int(self.frames/2)) % self.frames
new_videos = torch.zeros_like(adv_videos)
for i in range(self.frames):
ori_ind = i
new_ind = (ori_ind + direction * cycle_move) % self.frames
new_videos[:,:,new_ind] = adv_videos[:,:,ori_ind]
return new_videos
def _exchange_move(self, adv_videos, exchange_lists):
new_videos = adv_videos.clone()
for exchange in exchange_lists:
one_frame, ano_frame = exchange
new_videos[:,:,one_frame] = adv_videos[:,:,ano_frame]
new_videos[:,:,ano_frame] = adv_videos[:,:,one_frame]
return new_videos
def _get_grad(self, adv_videos, labels, loss):
batch_size = adv_videos.shape[0]
used_labels = torch.cat([labels]*batch_size, dim=0)
adv_videos.requires_grad = True
outputs = self.model(adv_videos)
cost = self._targeted*loss(outputs, used_labels).to(self.device)
grad = torch.autograd.grad(cost, adv_videos,
retain_graph=False, create_graph=False)[0]
return grad
def _grad_augmentation(self, grads):
'''
Input:
grads: kernlen, grad.shape
Return
grad
'''
diff_position_same_frame = torch.zeros_like(grads)
for ind, cycle_move in enumerate(self.cycle_move_list):
diff_position_same_frame[ind] = self._cycle_move(grads[ind], -cycle_move)
d_conv_grad = self._conv1d_frame(diff_position_same_frame)
return d_conv_grad
def forward(self, videos, labels):
r"""
Overridden.
"""
videos = videos.to(self.device)
momentum = torch.zeros_like(videos).to(self.device)
labels = labels.to(self.device)
loss = nn.CrossEntropyLoss()
unnorm_videos = self._transform_video(videos.clone().detach(), mode='back') # [0, 1]
adv_videos = videos.clone().detach()
del videos
start_time = time.time()
for i in range(self.steps):
# obtain grads of these variants
batch_new_videos = []
for cycle_move in self.cycle_move_list:
if self.move_type == 'adj':
new_videos = self._cycle_move(adv_videos, cycle_move)
elif self.move_type == 'remote':
new_videos = self._cycle_move_remote(adv_videos, cycle_move)
elif self.move_type == 'random':
new_videos = self._cycle_move_random(adv_videos, cycle_move)
batch_new_videos.append(new_videos)
batch_inps = torch.cat(batch_new_videos, dim=0)
grads = []
batch_times = 5
length = len(self.cycle_move_list)
if self.model_name == 'TPNet':
batch_times = length
print (self.model_name, batch_times)
batch_size = math.ceil(length / batch_times)
for i in range(batch_times):
grad = self._get_grad(batch_inps[i*batch_size:min((i+1)*batch_size, length)], labels, loss)
grads.append(grad)
# grad augmentation
grads = torch.cat(grads, dim=0)
grads = torch.unsqueeze(grads, dim=1)
grad = self._grad_augmentation(grads)
# momentum
if self.momentum:
grad = norm_grads(grad)
grad += momentum * self.delay
momentum = grad
else:
pass
adv_videos = self._transform_video(adv_videos.detach(), mode='back') # [0, 1]
adv_videos = adv_videos + self.step_size*grad.sign()
delta = torch.clamp(adv_videos - unnorm_videos, min=-self.epsilon, max=self.epsilon)
adv_videos = torch.clamp(unnorm_videos + delta, min=0, max=1).detach()
adv_videos = self._transform_video(adv_videos, mode='forward') # norm
print ('now_time', time.time()-start_time)
return adv_videos
class TemporalTranslation_TI(Attack):
'''
TT-TI
model: a video model.
params = {
'kernlen': shift length. int.
'momentum': True or False.
'move_type': three shifting strategies. adj or remote or random.
'kernel_mode': three strategies to generate W. gaussian or linear or uniform.}
delay: hyper-parameter in momentum iterm.
'''
def __init__(self, model, params, epsilon=16/255, steps=1, delay=1.0):
super(TemporalTranslation_TI, self).__init__("TemporalTranslation_TI", model)
self.epsilon = epsilon
self.steps = steps
self.step_size = self.epsilon / self.steps
self.delay = delay
for name, value in params.items():
setattr(self, name, value)
self.frames = 32
self.cycle_move_list = self._move_info_generation()
if self.kernel_mode == 'gaussian':
kernel = self._initial_kernel_gaussian(self.kernlen).astype(np.float32) # (self.kernlen)
elif self.kernel_mode == 'linear':
kernel = self._initial_kernel_linear(self.kernlen).astype(np.float32) # (self.kernlen)
elif self.kernel_mode == 'uniform':
kernel = self._initial_kernel_uniform(self.kernlen).astype(np.float32) # (self.kernlen)
self.kernel = torch.from_numpy(np.expand_dims(kernel, 0)).to(self.device) # 1,self.kernlen
# TI kernel
ti_kernel = self._initial_kernel(15, 3).astype(np.float32) # (15,15)
stack_kernel = np.stack([ti_kernel, ti_kernel, ti_kernel]) # (3,15,15)
self.stack_kernel = torch.from_numpy(np.expand_dims(stack_kernel, 1)).to(self.device) # 3,1,15,15
def _move_info_generation(self):
max_move = int((self.kernlen - 1) / 2)
lists = [i for i in range(-max_move, max_move+1)]
return lists
def _initial_kernel_linear(self, kernlen):
k = int((kernlen - 1) / 2)
kern1d = []
for i in range(k+1):
kern1d.append(1 - i / (k+1))
kern1d = np.array(kern1d[::-1][:-1] + kern1d)
kernel = kern1d / kern1d.sum()
return kernel
def _initial_kernel_uniform(self, kernlen):
kern1d = np.ones(kernlen)
kernel = kern1d / kern1d.sum()
return kernel
def _initial_kernel_gaussian(self, kernlen):
assert kernlen%2 == 1
k = (kernlen - 1) /2
sigma = k/3
k = int(k)
def calculte_guassian(x, sigma):
return (1/(sigma*np.sqrt(2*np.pi)) * np.math.exp(-(x**2)/(2* (sigma**2))))
kern1d = []
for i in range(-k, k+1):
kern1d.append(calculte_guassian(i, sigma))
assert len(kern1d) == kernlen
kern1d = np.array(kern1d)
kernel = kern1d / kern1d.sum()
return kernel
def _conv1d_frame(self, grads):
'''
grads: D, N, C, T, H, W
'''
# cycle padding for grads
D,N,C,T,H,W = grads.shape
grads = grads.reshape(D, -1)
grad = torch.matmul(self.kernel, grads)
grad = grad.reshape(N,C,T,H,W)
return grad
def _cycle_move(self, adv_videos, cycle_move):
if cycle_move < 0:
direction = -1
else:
direction = 1
cycle_move = abs(cycle_move)
cycle_move = cycle_move % self.frames
new_videos = torch.zeros_like(adv_videos)
for i in range(self.frames):
ori_ind = i
new_ind = (ori_ind + direction * cycle_move) % self.frames
new_videos[:,:,new_ind] = adv_videos[:,:,ori_ind]
return new_videos
def _cycle_move_remote(self, adv_videos, cycle_move):
if cycle_move < 0:
direction = -1
else:
direction = 1
cycle_move = abs(cycle_move)
if cycle_move == 0:
cycle_move = cycle_move % self.frames
else:
cycle_move = (cycle_move + (int(self.frames/2)-1)) % self.frames
new_videos = torch.zeros_like(adv_videos)
for i in range(self.frames):
ori_ind = i
new_ind = (ori_ind + direction * cycle_move) % self.frames
new_videos[:,:,new_ind] = adv_videos[:,:,ori_ind]
return new_videos
def _cycle_move_random(self, adv_videos, cycle_move):
if cycle_move < 0:
direction = -1
else:
direction = 1
# cycle_move = abs(cycle_move)
if cycle_move == 0:
cycle_move = cycle_move % self.frames
else:
cycle_move = random.randint(0, 100) % self.frames
# cycle_move = (cycle_move + int(self.frames/2)) % self.frames
new_videos = torch.zeros_like(adv_videos)
for i in range(self.frames):
ori_ind = i
new_ind = (ori_ind + direction * cycle_move) % self.frames
new_videos[:,:,new_ind] = adv_videos[:,:,ori_ind]
return new_videos
def _exchange_move(self, adv_videos, exchange_lists):
new_videos = adv_videos.clone()
for exchange in exchange_lists:
one_frame, ano_frame = exchange
new_videos[:,:,one_frame] = adv_videos[:,:,ano_frame]
new_videos[:,:,ano_frame] = adv_videos[:,:,one_frame]
return new_videos
def _get_grad(self, adv_videos, labels, loss):
batch_size = adv_videos.shape[0]
used_labels = torch.cat([labels]*batch_size, dim=0)
adv_videos.requires_grad = True
outputs = self.model(adv_videos)
cost = self._targeted*loss(outputs, used_labels).to(self.device)
grad = torch.autograd.grad(cost, adv_videos,
retain_graph=False, create_graph=False)[0]
return grad
def _grad_augmentation(self, grads):
'''
Input:
grads: kernlen, grad.shape
Return
grad
'''
diff_position_same_frame = torch.zeros_like(grads)
for ind, cycle_move in enumerate(self.cycle_move_list):
diff_position_same_frame[ind] = self._cycle_move(grads[ind], -cycle_move)
d_conv_grad = self._conv1d_frame(diff_position_same_frame)
return d_conv_grad
# TI Function
def _initial_kernel(self, kernlen, nsig):
x = np.linspace(-nsig, nsig, kernlen)
kern1d = st.norm.pdf(x)
kernel_raw = np.outer(kern1d, kern1d)
kernel = kernel_raw / kernel_raw.sum()
return kernel
def _conv2d_frame(self, grads):
'''
grads: N, C, T, H, W
'''
frames = grads.shape[2]
out_grads = torch.zeros_like(grads)
for i in range(frames):
this_grads = grads[:,:,i]
out_grad = nn.functional.conv2d(this_grads, self.stack_kernel, groups=3, stride=1, padding=7)
out_grads[:,:,i] = out_grad
out_grads = out_grads / torch.mean(torch.abs(out_grads), [1,2,3], True)
return out_grads
def forward(self, videos, labels):
r"""
Overridden.
"""
videos = videos.to(self.device)
momentum = torch.zeros_like(videos).to(self.device)
labels = labels.to(self.device)
loss = nn.CrossEntropyLoss()
unnorm_videos = self._transform_video(videos.clone().detach(), mode='back') # [0, 1]
adv_videos = videos.clone().detach()
del videos
start_time = time.time()
for i in range(self.steps):
# obtain grads of these variants
batch_new_videos = []
for cycle_move in self.cycle_move_list:
if self.move_type == 'adj':
new_videos = self._cycle_move(adv_videos, cycle_move)
elif self.move_type == 'remote':
new_videos = self._cycle_move_remote(adv_videos, cycle_move)
elif self.move_type == 'random':
new_videos = self._cycle_move_random(adv_videos, cycle_move)
batch_new_videos.append(new_videos)
batch_inps = torch.cat(batch_new_videos, dim=0)
grads = []
batch_times = 5
length = len(self.cycle_move_list)
if self.model_name == 'TPNet':
batch_times = length
print (self.model_name, batch_times)
batch_size = math.ceil(length / batch_times)
for i in range(batch_times):
grad = self._get_grad(batch_inps[i*batch_size:min((i+1)*batch_size, length)], labels, loss)
grad = self._conv2d_frame(grad)
grads.append(grad)
# grad augmentation
grads = torch.cat(grads, dim=0)
grads = torch.unsqueeze(grads, dim=1)
grad = self._grad_augmentation(grads)
# momentum
if self.momentum:
grad = norm_grads(grad)
grad += momentum * self.delay
momentum = grad
else:
pass
adv_videos = self._transform_video(adv_videos.detach(), mode='back') # [0, 1]
adv_videos = adv_videos + self.step_size*grad.sign()
delta = torch.clamp(adv_videos - unnorm_videos, min=-self.epsilon, max=self.epsilon)
adv_videos = torch.clamp(unnorm_videos + delta, min=0, max=1).detach()
adv_videos = self._transform_video(adv_videos, mode='forward') # norm
print ('now_time', time.time()-start_time)
return adv_videos