-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathlogistic_regression.py
154 lines (129 loc) · 4.18 KB
/
logistic_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import numpy as np
import matplotlib.pyplot as plt
import metrics
import regularizer
import scipy
class LogisticRegressionGradientDescent:
def __init__(self, debug=True):
self.__debug = debug
def fit(self, X, y, epochs, optimizer, regularizer=regularizer.Regularizer(0)):
'''
Parameters
----------
X : shape (n_samples, n_features)
Training data
y : shape (n_samples,)
Target values, 1 or 0
epochs : The number of epochs
optimizer : Optimize algorithm, see also optimizer.py
regularizer : Regularize algorithm, see also regularizer.py
'''
n_samples, n_features = X.shape
self.__W = np.zeros(n_features)
self.__b = 0
if self.__debug:
accuracy = []
loss = []
for _ in range(epochs):
h = self.score(X)
g_W = X.T.dot(h - y) / n_samples + regularizer.regularize(self.__W)
g_b = np.mean(h - y)
g_W, g_b = optimizer.optimize([g_W, g_b])
self.__W -= g_W
self.__b -= g_b
if self.__debug:
h = self.score(X)
loss.append(np.mean(-y * np.log(h) - (1 - y) * np.log(1 - h)))
accuracy.append(metrics.accuracy(y, np.around(h)))
if self.__debug:
_, ax_loss = plt.subplots()
ax_loss.plot(loss, 'b')
ax_accuracy = ax_loss.twinx()
ax_accuracy.plot(accuracy, 'r')
plt.show()
def predict(self, X):
'''
Parameters
----------
X : shape (n_samples, n_features)
Predicting data
Returns
-------
y : shape (n_samples,)
Predicted class label per sample, 1 or 0
'''
return np.around(self.score(X))
def score(self, X):
'''
Parameters
----------
X : shape (n_samples, n_features)
Predicting data
Returns
-------
y : shape (n_samples,)
Predicted score per sample.
'''
return scipy.special.expit(X.dot(self.__W) + self.__b)
class LogisticRegressionNewton:
def __init__(self, debug=True):
self.__debug = debug
def fit(self, X, y, epochs):
'''
Parameters
----------
X : shape (n_samples, n_features)
Training data
y : shape (n_samples,)
Target values, 1 or 0
epochs : The number of epochs
'''
n_features = X.shape[1]
self.__W = np.zeros(n_features)
self.__b = 0
if self.__debug:
accuracy = []
loss = []
for _ in range(epochs):
h = self.score(X)
g_W = X.T.dot(h - y)
A = np.diag((h * (1 - h)).ravel())
H_W = X.T.dot(A).dot(X)
self.__W -= np.linalg.pinv(H_W).dot(g_W)
g_b = np.sum(h - y)
H_b = np.sum(h * (1 - h))
self.__b -= g_b / H_b
if self.__debug:
h = self.score(X)
loss.append(np.mean(-y * np.log(h) - (1 - y) * np.log(1 - h)))
accuracy.append(metrics.accuracy(y, np.around(h)))
if self.__debug:
_, ax_loss = plt.subplots()
ax_loss.plot(loss, 'b')
ax_accuracy = ax_loss.twinx()
ax_accuracy.plot(accuracy, 'r')
plt.show()
def predict(self, X):
'''
Parameters
----------
X : shape (n_samples, n_features)
Predicting data
Returns
-------
y : shape (n_samples,)
Predicted class label per sample, 1 or 0
'''
return np.around(self.score(X))
def score(self, X):
'''
Parameters
----------
X : shape (n_samples, n_features)
Predicting data
Returns
-------
y : shape (n_samples,)
Predicted score per sample.
'''
return scipy.special.expit(X.dot(self.__W) + self.__b)