-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathdistance.py
83 lines (73 loc) · 2.18 KB
/
distance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import numpy as np
def euclidean_distance(center, X):
'''
Parameters
----------
X : shape (n_samples, n_features)
The other end points of distance
center : shape (n_features,)
The one end point of distance
Returns
-------
distance : shape (n_samples, 1)
Euclidean distances to center
'''
return np.linalg.norm(X - center, axis=1)
def manhattan_distance(center, X):
'''
Parameters
----------
X : shape (n_samples, n_features)
The other end points of distance
center : shape (n_features,)
The one end point of distance
Returns
-------
distance : shape (n_samples, 1)
Manhattan distances to center
'''
return np.sum(np.abs(X - center), axis=1)
def chebyshev_distance(center, X):
'''
Parameters
----------
X : shape (n_samples, n_features)
The other end points of distance
center : shape (n_features,)
The one end point of distance
Returns
-------
distance : shape (n_samples, 1)
Chebyshev distances to center
'''
return np.max(np.abs(X - center), axis=1)
def mahalanobis_distance(center, X):
'''
Parameters
----------
X : shape (n_samples, n_features)
The other end points of distance
center : shape (n_features,)
The one end point of distance
Returns
-------
distance : shape (n_samples, 1)
Mahalanobis distances to center
'''
s_inv = np.linalg.inv(np.cov(X.T))
distance = lambda x: np.sqrt((x - center).dot(s_inv).dot((x - center).T))
return np.apply_along_axis(distance, 1, X)
def cosine_distance(center, X):
'''
Parameters
----------
X : shape (n_samples, n_features)
The other end points of distance
center : shape (n_features,)
The one end point of distance
Returns
-------
distance : shape (n_samples, 1)
Cosine distances to center
'''
return np.einsum('ij,ij->i', X, center.reshape((1, -1))) / (np.linalg.norm(X, axis=1) * np.linalg.norm(center))