-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPerfectMatchesAll.py
305 lines (277 loc) · 9.83 KB
/
PerfectMatchesAll.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
'''
单线程求出所有短串对所有长串的匹配信息
'''
import argparse
import os
import Levenshtein as leve
from tqdm import tqdm
from collections import Counter
import json
import sys
import math
sys.setrecursionlimit(90000)
DEFAULT_PARAM_FILE = 'param.json'
DEFAULT_LONG_FILE = 'long.fasta'
DEFAULT_SHORT_1_FILE = 'short_1.fasta'
DEFAULT_SHORT_2_FILE = 'short_2.fasta'
DEFAULT_FIXED_LONG_FILE = 'fixed_long.fasta'
DEFAULT_MATCHES_FILE = 'matches.json'
PROGRESS_FILE = 'progress.json'
ARGS = None
DEFAULT_PROGRESS = {
"now_part": 1,
"now_done": 0,
"total_done": 0
}
PROGRESS = DEFAULT_PROGRESS
PARAM = {}
MAXDIS = 21
PART_ID = 0
def parse_args():
global ARGS, PROGRESS_FILE
parser = argparse.ArgumentParser()
parser.add_argument('DATA_DIR', type=str, help='the dataset\'s directory')
parser.add_argument('-fl', '--FIXED_LONG_FILE', type=str,
default=DEFAULT_FIXED_LONG_FILE, help='fixed long data file\'s name')
parser.add_argument('-m', '--MATCHES_FILE', type=str,
default=DEFAULT_MATCHES_FILE, help='match info file \'s name')
parser.add_argument('-p', '--PARAM_FILE', type=str,
default=DEFAULT_PARAM_FILE, help='the param file\'s name')
parser.add_argument('-l', '--LONG_FILE', type=str,
default=DEFAULT_LONG_FILE, help='the long data file\'s name')
parser.add_argument('-s1', '--SHORT_1_FILE', type=str,
default=DEFAULT_SHORT_1_FILE, help='the short_1 file\'s name')
parser.add_argument('-s2', '--SHORT_2_FILE', type=str,
default=DEFAULT_SHORT_2_FILE, help='the short_2 file\'s name')
ARGS = parser.parse_args()
ARGS.PARAM_FILE = os.path.join(ARGS.DATA_DIR, ARGS.PARAM_FILE)
ARGS.LONG_FILE = os.path.join(ARGS.DATA_DIR, ARGS.LONG_FILE)
ARGS.SHORT_1_FILE = os.path.join(ARGS.DATA_DIR, ARGS.SHORT_1_FILE)
ARGS.SHORT_2_FILE = os.path.join(ARGS.DATA_DIR, ARGS.SHORT_2_FILE)
ARGS.FIXED_LONG_FILE = os.path.join(ARGS.DATA_DIR, ARGS.FIXED_LONG_FILE)
ARGS.MATCHES_FILE = os.path.join(ARGS.DATA_DIR, ARGS.MATCHES_FILE)
PROGRESS_FILE = os.path.join(ARGS.DATA_DIR, PROGRESS_FILE)
def prepare_fasta_data(filename):
content = []
print('Load data', filename)
with open(filename, 'r') as f:
lines = f.readlines()
name = 'Unknown'
for i, line in enumerate(tqdm(lines)):
if (i & 1) == 0:
name = line.strip('\n')
else:
content.append({'name': name, 's': line.strip('\n')})
return content
def get_comp_rev_data(content):
tran = {'A': 'T', 'T': 'A', 'G': 'C', 'C': 'G'}
return [{
'name': data['name']+'(comp_rev)',
's': ''.join([tran[c] for c in data['s']][::-1])
} for data in content]
def match_short_data(long_data, short_data):
long = long_data['s']
short = short_data['s']
mindis = -1
minpos = 0
for i in range(len(long)-len(short)+1):
dis = leve.hamming(short, long[i:i+len(short)])
if mindis == -1 or dis < mindis:
mindis = dis
minpos = i
# # tail
# for i in range(len(long)-len(short)+1, len(long)-(len(short)//2)+1):
# common = len(long)-i
# # ceil(dis*LEN_SHORT/LEN_COMMON)
# dis = (leve.hamming(short[:common],
# long[i:i+common])*len(short)+common-1)//common
# if mindis == -1 or dis < mindis:
# mindis = dis
# minpos = i
# # head
# for i in range(-(len(short)//2), 0):
# common = len(short)+i
# # ceil(dis*LEN_SHORT/LEN_COMMON)
# dis = (leve.hamming(short[-i:], long[:common])
# * len(short)+common-1)//common
# if mindis == -1 or dis < mindis:
# mindis = dis
# minpos = i
match = {
'name': short_data['name'],
'pos': minpos,
'dis': mindis,
's': short_data['s']
}
return match
def fix_long_data_by_matches(long_data, match_info):
match_info = sorted(match_info, key=lambda x: x['pos'])
long = long_data['s']
new_match_info = []
now_info = 0
now_que = []
new_long = ''
for now_pos in range(len(long)):
# add new match_info to que
while now_info < len(match_info) and match_info[now_info]['pos'] <= now_pos:
now_que.append(match_info[now_info])
now_info += 1
# save survived match_info to new_match_info
while len(now_que) > 0 and now_que[0]['pos']+len(now_que[0]['s']) <= now_pos:
new_match_info.append(now_que[0])
now_que.pop(0)
# count now char
vote = {
'A': 0,
'T': 0,
'G': 0,
'C': 0
}
vote[long[now_pos]] = 1
vote_max = 1
vote_char = long[now_pos]
for match in now_que:
vote[match['s'][now_pos-match['pos']]] += 1
for k, v in vote.items():
if v > vote_max:
vote_max = v
vote_char = k
new_long += vote_char
# # remove not correct match_info
# for i in range(len(now_que)):
# while i < len(now_que) and now_que[i]['s'][now_pos-now_que[i]['pos']] != vote_char:
# now_que.pop(i)
# save survival match_info to new_match_info
while len(now_que) > 0:
new_match_info.append(now_que[0])
now_que.pop(0)
fixed_long_data = {
'name': long_data['name']+'(fixed)',
's': new_long
}
return fixed_long_data, new_match_info
def match_short_dataset(long_data, short_dataset):
match_info = []
for short_data in short_dataset:
match = match_short_data(long_data, short_data)
if match['dis'] < MAXDIS:
match_info.append(match)
fixed_data, match_info = fix_long_data_by_matches(long_data, match_info)
return fixed_data, match_info
def get_match_info_and_save(long_dataset, short_datasets):
global PART_ID
PART_ID += 1
if PROGRESS['now_part'] < PART_ID-1: # Unknow error
raise 'Part Error'
elif PROGRESS['now_part'] == PART_ID-1: # New part
PROGRESS['now_part'] = PART_ID
PROGRESS['now_done'] = 0
elif PROGRESS['now_part'] == PART_ID: # Continue
print('Continue: have done %d/%d' %
(PROGRESS['now_done'], len(long_dataset)))
else: # Done
print('Done')
return
offset = PROGRESS['now_done']
fixed_dataset = []
match_infoset = []
mixed_short_dataset = []
# mix all short data
for short_dataset in short_datasets:
mixed_short_dataset.extend(short_dataset)
for i, long_data in enumerate(tqdm(long_dataset)):
if i < offset:
continue
fixed_data, match_info = match_short_dataset(
long_data, mixed_short_dataset)
save_all_and_update_progress(fixed_data, match_info)
fixed_dataset.append(fixed_data)
match_infoset.append(match_info)
print('Done')
def save_all_and_update_progress(fixed_data, match_info):
with open(ARGS.FIXED_LONG_FILE, 'a') as f:
f.write(fixed_data['name']+'\n')
f.write(fixed_data['s']+'\n')
with open(ARGS.MATCHES_FILE, 'a') as f:
f.write(json.dumps(match_info)+',\n')
PROGRESS['now_done'] += 1
PROGRESS['total_done'] += 1
with open(PROGRESS_FILE, 'w') as f:
f.write(json.dumps(PROGRESS))
def fix_data():
if PROGRESS['total_done'] > 0:
lines = []
with open(ARGS.FIXED_LONG_FILE, 'r') as f:
for i, line in enumerate(f.readlines()):
if i < PROGRESS['total_done']*2:
lines.append(line.strip('\n'))
assert len(lines) == PROGRESS['total_done']*2
with open(ARGS.FIXED_LONG_FILE, 'w') as f:
for line in lines:
f.write(line+'\n')
match_infoset = []
with open(ARGS.MATCHES_FILE, 'r') as f:
s = f.read().strip('\n')[:-1] # 刪除逗號
s = '['+s+']'
match_infoset = json.loads(s)[:PROGRESS['total_done']]
assert len(match_infoset) == PROGRESS['total_done']
with open(ARGS.MATCHES_FILE, 'w') as f:
for match_info in match_infoset:
f.write(json.dumps(match_info)+',\n')
else:
assert PROGRESS['total_done'] == 0
with open(ARGS.FIXED_LONG_FILE, 'w') as f:
pass
with open(ARGS.MATCHES_FILE, 'w') as f:
pass
if __name__ == "__main__":
'''
long_dna = xxx
long_data = {
'name': XXX
's': long_dna
}
long_dataset = [long_data]
long_datasets = [long_dataset]
match = {
'name': XXX
'pos': x
'dis': x
}
match_info = [match]
match_infoset = [match_info]
match_infosets = [match_infoset]
'''
# load ARGS
parse_args()
# load data
with open(ARGS.PARAM_FILE, 'r') as f:
PARAM = json.loads(f.read())
fs1 = prepare_fasta_data(ARGS.SHORT_1_FILE)
fs2 = prepare_fasta_data(ARGS.SHORT_2_FILE)
fl = prepare_fasta_data(ARGS.LONG_FILE)
fs1_rev = get_comp_rev_data(fs1)
fs2_rev = get_comp_rev_data(fs2)
fl_rev = get_comp_rev_data(fl)
# update threhold
MAXDIS = math.floor(PARAM['short_read_length'] *
(PARAM['short_read_error_rate']+PARAM['long_read_error_rate'])+5)
# load PROGRESS
try:
with open(PROGRESS_FILE, 'r') as f:
pre = json.loads(f.read())
if isinstance(pre, dict):
for k, v in PROGRESS.items():
PROGRESS[k] = pre.get(k, v)
except:
print('Create progress.json')
PROGRESS = DEFAULT_PROGRESS
# fix files
fix_data()
# begin fix
print('Fixing long_read')
get_match_info_and_save(
fl, [fs1, fs2, fs1_rev, fs2_rev])
print('Fixing long_read(rev_comp)')
get_match_info_and_save(
fl_rev, [fs1, fs2, fs1_rev, fs2_rev])