-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
54 lines (52 loc) · 2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import torch
import pytorch_lightning as pl
import numpy as np
import argparse
from pytorch_lightning.callbacks import ModelCheckpoint
from models.detector import Detector
import random
def main(args):
if args.mode == 'train':
checkpoint_callback = ModelCheckpoint(monitor='train_loss',mode='min',save_top_k=3,save_last=True,
filename='../save_model/{epoch:02d}-{train_loss:.5f}',
)
model = Detector()
model.add_extra_args(args=args)
trainer = pl.Trainer(
gpus=args.gpu_num,
check_val_every_n_epoch=1,
strategy='ddp',
sync_batchnorm = True,
max_epochs = args.epochs,
callbacks=[checkpoint_callback],
)
trainer.fit(model)
elif args.mode == 'test':
trainer = pl.Trainer(
gpus=[int(args.test_gpu_num)],
enable_checkpointing=False,
# limit_test_batches=0.1,
)
model = Detector.load_from_checkpoint(args.weight)
model.add_extra_args(args=args)
# model = model.load_from_checkpoint(args.weight)
trainer.test(model)
def parse():
parser = argparse.ArgumentParser()
parser.add_argument('--mode',default='test') # train test
parser.add_argument('--weight',default='')
parser.add_argument('--data' ,default='Structured3D')
parser.add_argument('--batch_size',default=16)
parser.add_argument('--num_workers',default=12)
parser.add_argument('--epochs',default=50)
parser.add_argument('--test_gpu_num',default=0)
parser.add_argument('--gpu_num',default=2)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse()
random.seed(123)
torch.manual_seed(123)
np.random.seed(123)
torch.cuda.manual_seed(123)
main(args)