-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_dataset.py
66 lines (46 loc) · 1.58 KB
/
make_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import numpy as np
from utils import in_model
from config import opt
import process
import warnings
warnings.filterwarnings("ignore")
class train_Dataset:
def __init__(self, img_list):
self.img_path = opt.path_img
self.img_list = img_list
return
def __getitem__(self, idx):
path_name = self.img_list[idx]
# for img
tmp_data = in_model.get_img(self.img_path, path_name)
img_dict = process.train_preprocess(tmp_data)
img_list = [img_dict['T1'], img_dict['T2'], img_dict['FL']]
img = np.array(img_list)
img = img.astype('float32')
bbox_array = img_dict['BBOX']
annot = in_model.get_bbox(bbox_array)
annot = annot.astype('float32')
return_list = [path_name, img, annot]
return return_list
def __len__(self):
return len(self.img_list)
class val_Dataset:
def __init__(self, img_list):
self.img_path = opt.path_img
self.img_list = img_list
return
def __getitem__(self, idx):
path_name = self.img_list[idx]
# for img
tmp_data = in_model.get_img(self.img_path, path_name)
img_dict = process.val_preprocess(tmp_data)
img_list = [img_dict['T1'], img_dict['T2'], img_dict['FL']]
img = np.array(img_list)
img = img.astype('float32')
bbox_array = img_dict['BBOX']
annot = in_model.get_bbox(bbox_array)
annot = annot.astype('float32')
return_list = [path_name, img, annot]
return return_list
def __len__(self):
return len(self.img_list)