-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathglcm.py
827 lines (645 loc) · 33.8 KB
/
glcm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
import numpy
from six.moves import range
from radiomics import base, cMatrices, deprecated
class RadiomicsGLCM(base.RadiomicsFeaturesBase):
r"""
A Gray Level Co-occurrence Matrix (GLCM) of size :math:`N_g \times N_g` describes the second-order joint probability
function of an image region constrained by the mask and is defined as :math:`\textbf{P}(i,j|\delta,\theta)`.
The :math:`(i,j)^{\text{th}}` element of this matrix represents the number of times the combination of
levels :math:`i` and :math:`j` occur in two pixels in the image, that are separated by a distance of :math:`\delta`
pixels along angle :math:`\theta`.
The distance :math:`\delta` from the center voxel is defined as the distance according to the infinity norm.
For :math:`\delta=1`, this results in 2 neighbors for each of 13 angles in 3D (26-connectivity) and for
:math:`\delta=2` a 98-connectivity (49 unique angles).
Note that pyradiomics by default computes symmetrical GLCM!
As a two dimensional example, let the following matrix :math:`\textbf{I}` represent a 5x5 image, having 5 discrete
grey levels:
.. math::
\textbf{I} = \begin{bmatrix}
1 & 2 & 5 & 2 & 3\\
3 & 2 & 1 & 3 & 1\\
1 & 3 & 5 & 5 & 2\\
1 & 1 & 1 & 1 & 2\\
1 & 2 & 4 & 3 & 5 \end{bmatrix}
For distance :math:`\delta = 1` (considering pixels with a distance of 1 pixel from each other)
and angle :math:`\theta=0^\circ` (horizontal plane, i.e. voxels to the left and right of the center voxel),
the following symmetrical GLCM is obtained:
.. math::
\textbf{P} = \begin{bmatrix}
6 & 4 & 3 & 0 & 0\\
4 & 0 & 2 & 1 & 3\\
3 & 2 & 0 & 1 & 2\\
0 & 1 & 1 & 0 & 0\\
0 & 3 & 2 & 0 & 2 \end{bmatrix}
Let:
- :math:`\epsilon` be an arbitrarily small positive number (:math:`\approx 2.2\times10^{-16}`)
- :math:`\textbf{P}(i,j)` be the co-occurence matrix for an arbitrary :math:`\delta` and :math:`\theta`
- :math:`p(i,j)` be the normalized co-occurence matrix and equal to
:math:`\frac{\textbf{P}(i,j)}{\sum{\textbf{P}(i,j)}}`
- :math:`N_g` be the number of discrete intensity levels in the image
- :math:`p_x(i) = \sum^{N_g}_{j=1}{P(i,j)}` be the marginal row probabilities
- :math:`p_y(j) = \sum^{N_g}_{i=1}{P(i,j)}` be the marginal column probabilities
- :math:`\mu_x` be the mean gray level intensity of :math:`p_x` and defined as
:math:`\mu_x = \displaystyle\sum^{N_g}_{i=1}{p_x(i)i}`
- :math:`\mu_y` be the mean gray level intensity of :math:`p_y` and defined as
:math:`\mu_y = \displaystyle\sum^{N_g}_{j=1}{p_y(j)j}`
- :math:`\sigma_x` be the standard deviation of :math:`p_x`
- :math:`\sigma_y` be the standard deviation of :math:`p_y`
- :math:`p_{x+y}(k) = \sum^{N_g}_{i=1}\sum^{N_g}_{j=1}{p(i,j)},\text{ where }i+j=k,\text{ and }k=2,3,\dots,2N_g`
- :math:`p_{x-y}(k) = \sum^{N_g}_{i=1}\sum^{N_g}_{j=1}{p(i,j)},\text{ where }|i-j|=k,\text{ and }k=0,1,\dots,N_g-1`
- :math:`HX = -\sum^{N_g}_{i=1}{p_x(i)\log_2\big(p_x(i)+\epsilon\big)}` be the entropy of :math:`p_x`
- :math:`HY = -\sum^{N_g}_{j=1}{p_y(j)\log_2\big(p_y(j)+\epsilon\big)}` be the entropy of :math:`p_y`
- :math:`HXY = -\sum^{N_g}_{i=1}\sum^{N_g}_{j=1}{p(i,j)\log_2\big(p(i,j)+\epsilon\big)}` be the entropy of
:math:`p(i,j)`
- :math:`HXY1 = -\sum^{N_g}_{i=1}\sum^{N_g}_{j=1}{p(i,j)\log_2\big(p_x(i)p_y(j)+\epsilon\big)}`
- :math:`HXY2 = -\sum^{N_g}_{i=1}\sum^{N_g}_{j=1}{p_x(i)p_y(j)\log_2\big(p_x(i)p_y(j)+\epsilon\big)}`
By default, the value of a feature is calculated on the GLCM for each angle separately, after which the mean of these
values is returned. If distance weighting is enabled, GLCM matrices are weighted by weighting factor W and
then summed and normalised. Features are then calculated on the resultant matrix.
Weighting factor W is calculated for the distance between neighbouring voxels by:
:math:`W = e^{-\|d\|^2}`, where d is the distance for the associated angle according
to the norm specified in setting 'weightingNorm'.
The following class specific settings are possible:
- distances [[1]]: List of integers. This specifies the distances between the center voxel and the neighbor, for which
angles should be generated.
- symmetricalGLCM [True]: boolean, indicates whether co-occurrences should be assessed in two directions per angle,
which results in a symmetrical matrix, with equal distributions for :math:`i` and :math:`j`. A symmetrical matrix
corresponds to the GLCM as defined by Haralick et al.
- weightingNorm [None]: string, indicates which norm should be used when applying distance weighting.
Enumerated setting, possible values:
- 'manhattan': first order norm
- 'euclidean': second order norm
- 'infinity': infinity norm.
- 'no_weighting': GLCMs are weighted by factor 1 and summed
- None: Applies no weighting, mean of values calculated on separate matrices is returned.
In case of other values, an warning is logged and option 'no_weighting' is used.
References
- Haralick, R., Shanmugan, K., Dinstein, I; Textural features for image classification;
IEEE Transactions on Systems, Man and Cybernetics; 1973(3), p610-621
- `<https://en.wikipedia.org/wiki/Co-occurrence_matrix>`_
- `<http://www.fp.ucalgary.ca/mhallbey/the_glcm.htm>`_
"""
def __init__(self, inputImage, inputMask, **kwargs):
super(RadiomicsGLCM, self).__init__(inputImage, inputMask, **kwargs)
self.symmetricalGLCM = kwargs.get('symmetricalGLCM', True)
self.weightingNorm = kwargs.get('weightingNorm', None) # manhattan, euclidean, infinity
self.P_glcm = None
self.imageArray = self._applyBinning(self.imageArray)
def _initCalculation(self, voxelCoordinates=None):
self.P_glcm = self._calculateMatrix(voxelCoordinates)
self._calculateCoefficients()
self.logger.debug('GLCM feature class initialized, calculated GLCM with shape %s', self.P_glcm.shape)
def _calculateMatrix(self, voxelCoordinates=None):
r"""
Compute GLCMs for the input image for every direction in 3D.
Calculated GLCMs are placed in array P_glcm with shape (i/j, a)
i/j = total gray-level bins for image array,
a = directions in 3D (generated by imageoperations.generateAngles)
"""
self.logger.debug('Calculating GLCM matrix in C')
Ng = self.coefficients['Ng']
matrix_args = [
self.imageArray,
self.maskArray,
numpy.array(self.settings.get('distances', [1])),
Ng,
self.settings.get('force2D', False),
self.settings.get('force2Ddimension', 0)
]
if self.voxelBased:
matrix_args += [self.settings.get('kernelRadius', 1), voxelCoordinates]
P_glcm, angles = cMatrices.calculate_glcm(*matrix_args)
self.logger.debug('Process calculated matrix')
# Delete rows and columns that specify gray levels not present in the ROI
NgVector = range(1, Ng + 1) # All possible gray values
GrayLevels = self.coefficients['grayLevels'] # Gray values present in ROI
emptyGrayLevels = numpy.array(list(set(NgVector) - set(GrayLevels))) # Gray values NOT present in ROI
P_glcm = numpy.delete(P_glcm, emptyGrayLevels - 1, 1)
P_glcm = numpy.delete(P_glcm, emptyGrayLevels - 1, 2)
# Optionally make GLCMs symmetrical for each angle
if self.symmetricalGLCM:
self.logger.debug('Create symmetrical matrix')
# Transpose and copy GLCM and add it to P_glcm. Numpy.transpose returns a view if possible, use .copy() to ensure
# a copy of the array is used and not just a view (otherwise erroneous additions can occur)
P_glcm += numpy.transpose(P_glcm, (0, 2, 1, 3)).copy()
# Optionally apply a weighting factor
if self.weightingNorm is not None:
self.logger.debug('Applying weighting (%s)', self.weightingNorm)
pixelSpacing = self.inputImage.GetSpacing()[::-1]
weights = numpy.empty(len(angles))
for a_idx, a in enumerate(angles):
if self.weightingNorm == 'infinity':
weights[a_idx] = numpy.exp(-max(numpy.abs(a) * pixelSpacing) ** 2)
elif self.weightingNorm == 'euclidean':
weights[a_idx] = numpy.exp(-numpy.sum((numpy.abs(a) * pixelSpacing) ** 2)) # sqrt ^ 2 = 1
elif self.weightingNorm == 'manhattan':
weights[a_idx] = numpy.exp(-numpy.sum(numpy.abs(a) * pixelSpacing) ** 2)
elif self.weightingNorm == 'no_weighting':
weights[a_idx] = 1
else:
self.logger.warning('weigthing norm "%s" is unknown, W is set to 1', self.weightingNorm)
weights[a_idx] = 1
P_glcm = numpy.sum(P_glcm * weights[None, None, None, :], 3, keepdims=True)
sumP_glcm = numpy.sum(P_glcm, (1, 2))
# Delete empty angles if no weighting is applied
if P_glcm.shape[3] > 1:
emptyAngles = numpy.where(numpy.sum(sumP_glcm, 0) == 0)
if len(emptyAngles[0]) > 0: # One or more angles are 'empty'
self.logger.debug('Deleting %d empty angles:\n%s', len(emptyAngles[0]), angles[emptyAngles])
P_glcm = numpy.delete(P_glcm, emptyAngles, 3)
sumP_glcm = numpy.delete(sumP_glcm, emptyAngles, 1)
else:
self.logger.debug('No empty angles')
# Mark empty angles with NaN, allowing them to be ignored in feature calculation
sumP_glcm[sumP_glcm == 0] = numpy.nan
# Normalize each glcm
P_glcm /= sumP_glcm[:, None, None, :]
return P_glcm
# check if ivector and jvector can be replaced
def _calculateCoefficients(self):
r"""
Calculate and fill in the coefficients dict.
"""
self.logger.debug('Calculating GLCM coefficients')
Ng = self.coefficients['Ng']
eps = numpy.spacing(1)
NgVector = self.coefficients['grayLevels'].astype('float')
# shape = (Ng, Ng)
i, j = numpy.meshgrid(NgVector, NgVector, indexing='ij', sparse=True)
# shape = (2*Ng-1)
kValuesSum = numpy.arange(2, (Ng * 2) + 1, dtype='float')
# shape = (Ng-1)
kValuesDiff = numpy.arange(0, Ng, dtype='float')
# marginal row probabilities #shape = (Nv, Ng, 1, angles)
px = self.P_glcm.sum(2, keepdims=True)
# marginal column probabilities #shape = (Nv, 1, Ng, angles)
py = self.P_glcm.sum(1, keepdims=True)
# shape = (Nv, 1, 1, angles)
ux = numpy.sum(i[None, :, :, None] * self.P_glcm, (1, 2), keepdims=True)
uy = numpy.sum(j[None, :, :, None] * self.P_glcm, (1, 2), keepdims=True)
# shape = (Nv, 2*Ng-1, angles)
pxAddy = numpy.array([numpy.sum(self.P_glcm[:, i + j == k, :], 1) for k in kValuesSum]).transpose((1, 0, 2))
# shape = (Nv, Ng, angles)
pxSuby = numpy.array([numpy.sum(self.P_glcm[:, numpy.abs(i - j) == k, :], 1) for k in kValuesDiff]).transpose((1, 0, 2))
# shape = (Nv, angles)
HXY = (-1) * numpy.sum((self.P_glcm * numpy.log2(self.P_glcm + eps)), (1, 2))
self.coefficients['eps'] = eps
self.coefficients['i'] = i
self.coefficients['j'] = j
self.coefficients['kValuesSum'] = kValuesSum
self.coefficients['kValuesDiff'] = kValuesDiff
self.coefficients['px'] = px
self.coefficients['py'] = py
self.coefficients['ux'] = ux
self.coefficients['uy'] = uy
self.coefficients['pxAddy'] = pxAddy
self.coefficients['pxSuby'] = pxSuby
self.coefficients['HXY'] = HXY
def getAutocorrelationFeatureValue(self):
r"""
**1. Autocorrelation**
.. math::
\textit{autocorrelation} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}{p(i,j)ij}
Autocorrelation is a measure of the magnitude of the fineness and coarseness of texture.
"""
i = self.coefficients['i']
j = self.coefficients['j']
ac = numpy.sum(self.P_glcm * (i * j)[None, :, :, None], (1, 2))
return numpy.nanmean(ac, 1)
def getJointAverageFeatureValue(self):
r"""
**2. Joint Average**
.. math::
\textit{joint average} = \mu_x = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}{p(i,j)i}
Returns the mean gray level intensity of the :math:`i` distribution.
.. warning::
As this formula represents the average of the distribution of :math:`i`, it is independent from the
distribution of :math:`j`. Therefore, only use this formula if the GLCM is symmetrical, where
:math:`p_x(i) = p_y(j) \text{, where } i = j`.
"""
if not self.symmetricalGLCM:
self.logger.warning('The formula for GLCM - Joint Average assumes that the GLCM is symmetrical, but this is not the case.')
return self.coefficients['ux'].mean((1, 2, 3))
def getClusterProminenceFeatureValue(self):
r"""
**3. Cluster Prominence**
.. math::
\textit{cluster prominence} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}
{\big( i+j-\mu_x-\mu_y\big)^4p(i,j)}
Cluster Prominence is a measure of the skewness and asymmetry of the GLCM. A higher values implies more asymmetry
about the mean while a lower value indicates a peak near the mean value and less variation about the mean.
"""
i = self.coefficients['i']
j = self.coefficients['j']
ux = self.coefficients['ux']
uy = self.coefficients['uy']
cp = numpy.sum((self.P_glcm * (((i + j)[None, :, :, None] - ux - uy) ** 4)), (1, 2))
return numpy.nanmean(cp, 1)
def getClusterShadeFeatureValue(self):
r"""
**4. Cluster Shade**
.. math::
\textit{cluster shade} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}
{\big(i+j-\mu_x-\mu_y\big)^3p(i,j)}
Cluster Shade is a measure of the skewness and uniformity of the GLCM.
A higher cluster shade implies greater asymmetry about the mean.
"""
i = self.coefficients['i']
j = self.coefficients['j']
ux = self.coefficients['ux']
uy = self.coefficients['uy']
cs = numpy.sum((self.P_glcm * (((i + j)[None, :, :, None] - ux - uy) ** 3)), (1, 2))
return numpy.nanmean(cs, 1)
def getClusterTendencyFeatureValue(self):
r"""
**5. Cluster Tendency**
.. math::
\textit{cluster tendency} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}
{\big(i+j-\mu_x-\mu_y\big)^2p(i,j)}
Cluster Tendency is a measure of groupings of voxels with similar gray-level values.
"""
i = self.coefficients['i']
j = self.coefficients['j']
ux = self.coefficients['ux']
uy = self.coefficients['uy']
ct = numpy.sum((self.P_glcm * (((i + j)[None, :, :, None] - ux - uy) ** 2)), (1, 2))
return numpy.nanmean(ct, 1)
def getContrastFeatureValue(self):
r"""
**6. Contrast**
.. math::
\textit{contrast} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}{(i-j)^2p(i,j)}
Contrast is a measure of the local intensity variation, favoring values away from the diagonal :math:`(i = j)`. A
larger value correlates with a greater disparity in intensity values among neighboring voxels.
"""
i = self.coefficients['i']
j = self.coefficients['j']
cont = numpy.sum((self.P_glcm * ((numpy.abs(i - j))[None, :, :, None] ** 2)), (1, 2))
return numpy.nanmean(cont, 1)
def getCorrelationFeatureValue(self):
r"""
**7. Correlation**
.. math::
\textit{correlation} = \frac{\sum^{N_g}_{i=1}\sum^{N_g}_{j=1}{p(i,j)ij-\mu_x\mu_y}}{\sigma_x(i)\sigma_y(j)}
Correlation is a value between 0 (uncorrelated) and 1 (perfectly correlated) showing the
linear dependency of gray level values to their respective voxels in the GLCM.
.. note::
When there is only 1 discreet gray value in the ROI (flat region), :math:`\sigma_x` and :math:`\sigma_y` will be
0. In this case, an arbitrary value of 1 is returned instead. This is assessed on a per-angle basis.
"""
eps = self.coefficients['eps']
i = self.coefficients['i']
j = self.coefficients['j']
ux = self.coefficients['ux']
uy = self.coefficients['uy']
# shape = (Nv, 1, 1, angles)
sigx = numpy.sum(self.P_glcm * ((i[None, :, :, None] - ux) ** 2), (1, 2), keepdims=True) ** 0.5
# shape = (Nv, 1, 1, angles)
sigy = numpy.sum(self.P_glcm * ((j[None, :, :, None] - uy) ** 2), (1, 2), keepdims=True) ** 0.5
corm = numpy.sum(self.P_glcm * (i[None, :, :, None] - ux) * (j[None, :, :, None] - uy), (1, 2), keepdims=True)
corr = corm / (sigx * sigy + eps)
corr[sigx * sigy == 0] = 1 # Set elements that would be divided by 0 to 1.
return numpy.nanmean(corr, (1, 2, 3))
def getDifferenceAverageFeatureValue(self):
r"""
**8. Difference Average**
.. math::
\textit{difference average} = \displaystyle\sum^{N_g-1}_{k=0}{kp_{x-y}(k)}
Difference Average measures the relationship between occurrences of pairs
with similar intensity values and occurrences of pairs with differing intensity
values.
"""
pxSuby = self.coefficients['pxSuby']
kValuesDiff = self.coefficients['kValuesDiff']
diffavg = numpy.sum((kValuesDiff[None, :, None] * pxSuby), 1)
return numpy.nanmean(diffavg, 1)
def getDifferenceEntropyFeatureValue(self):
r"""
**9. Difference Entropy**
.. math::
\textit{difference entropy} = \displaystyle\sum^{N_g-1}_{k=0}{p_{x-y}(k)\log_2\big(p_{x-y}(k)+\epsilon\big)}
Difference Entropy is a measure of the randomness/variability
in neighborhood intensity value differences.
"""
pxSuby = self.coefficients['pxSuby']
eps = self.coefficients['eps']
difent = (-1) * numpy.sum((pxSuby * numpy.log2(pxSuby + eps)), 1)
return numpy.nanmean(difent, 1)
def getDifferenceVarianceFeatureValue(self):
r"""
**10. Difference Variance**
.. math::
\textit{difference variance} = \displaystyle\sum^{N_g-1}_{k=0}{(k-DA)^2p_{x-y}(k)}
Difference Variance is a measure of heterogeneity that places higher weights on
differing intensity level pairs that deviate more from the mean.
"""
pxSuby = self.coefficients['pxSuby']
kValuesDiff = self.coefficients['kValuesDiff']
diffavg = numpy.sum((kValuesDiff[None, :, None] * pxSuby), 1, keepdims=True)
diffvar = numpy.sum((pxSuby * ((kValuesDiff[None, :, None] - diffavg) ** 2)), 1)
return numpy.nanmean(diffvar, 1)
@deprecated
def getDissimilarityFeatureValue(self):
r"""
**DEPRECATED. Dissimilarity**
.. math::
\textit{dissimilarity} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}{|i-j|p(i,j)}
.. warning::
This feature has been deprecated, as it is mathematically equal to Difference Average
:py:func:`~radiomics.glcm.RadiomicsGLCM.getDifferenceAverageFeatureValue()`.
See :ref:`here <radiomics-excluded-dissimilarity-label>` for the proof. **Enabling this feature will result in the
logging of a DeprecationWarning (does not interrupt extraction of other features), no value is calculated for this features**
"""
raise DeprecationWarning('GLCM - Dissimilarity is mathematically equal to GLCM - Difference Average, '
'see http://pyradiomics.readthedocs.io/en/latest/removedfeatures.html for more details')
def getJointEnergyFeatureValue(self):
r"""
**11. Joint Energy**
.. math::
\textit{joint energy} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}{\big(p(i,j)\big)^2}
Energy is a measure of homogeneous patterns
in the image. A greater Energy implies that there are more instances
of intensity value pairs in the image that neighbor each other at
higher frequencies.
.. note::
Defined by IBSI as Angular Second Moment.
"""
ene = numpy.sum((self.P_glcm ** 2), (1, 2))
return numpy.nanmean(ene, 1)
def getJointEntropyFeatureValue(self):
r"""
**12. Joint Entropy**
.. math::
\textit{joint entropy} = -\displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}
{p(i,j)\log_2\big(p(i,j)+\epsilon\big)}
Joint entropy is a measure of the randomness/variability in neighborhood intensity values.
.. note::
Defined by IBSI as Joint entropy
"""
ent = self.coefficients['HXY']
return numpy.nanmean(ent, 1)
@deprecated
def getHomogeneity1FeatureValue(self):
r"""
**DEPRECATED. Homogeneity 1**
.. math::
\textit{homogeneity 1} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}{\frac{p(i,j)}{1+|i-j|}}
.. warning::
This feature has been deprecated, as it is mathematically equal to Inverse Difference
:py:func:`~radiomics.glcm.RadiomicsGLCM.getIdFeatureValue()`. **Enabling this feature will result in the
logging of a DeprecationWarning (does not interrupt extraction of other features), no value is calculated for this features**
"""
raise DeprecationWarning('GLCM - Homogeneity 1 is mathematically equal to GLCM - Inverse Difference, '
'see documentation of the GLCM feature class (section "Radiomic Features") for more details')
@deprecated
def getHomogeneity2FeatureValue(self):
r"""
**DEPRECATED. Homogeneity 2**
.. math::
\textit{homogeneity 2} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}{\frac{p(i,j)}{1+|i-j|^2}}
.. warning::
This feature has been deprecated, as it is mathematically equal to Inverse Difference Moment
:py:func:`~radiomics.glcm.RadiomicsGLCM.getIdmFeatureValue()`. **Enabling this feature will result in the
logging of a DeprecationWarning (does not interrupt extraction of other features), no value is calculated for this features**
"""
raise DeprecationWarning('GLCM - Homogeneity 2 is mathematically equal to GLCM - Inverse Difference Moment, '
'see documentation of the GLCM feature class (section "Radiomic Features") for more details')
def getImc1FeatureValue(self):
r"""
**13. Informational Measure of Correlation (IMC) 1**
.. math::
\textit{IMC 1} = \displaystyle\frac{HXY-HXY1}{\max\{HX,HY\}}
IMC1 assesses the correlation between the probability distributions of :math:`i` and :math:`j` (quantifying the
complexity of the texture), using mutual information I(x, y):
.. math::
I(i, j) = \sum^{N_g}_{i=1}\sum^{N_g}_{j=1}{p(i,j)\log_2\big(\frac{p(i,j)}{p_x(i)p_y(j)}\big)}
= \sum^{N_g}_{i=1}\sum^{N_g}_{j=1}{p(i,j)\big(\log_2 (p(i,j)) - \log_2 (p_x(i)p_y(j))\big)}
= \sum^{N_g}_{i=1}\sum^{N_g}_{j=1}{p(i,j)\log_2 \big(p(i,j)\big)} -
\sum^{N_g}_{i=1}\sum^{N_g}_{j=1}{p(i,j)\log_2 \big(p_x(i)p_y(j)\big)}
= -HXY + HXY1
However, in this formula, the numerator is defined as HXY - HXY1 (i.e. :math:`-I(x, y)`), and is
therefore :math:`\leq 0`. This reflects how this feature is defined in the original Haralick paper.
In the case where the distributions are independent, there is no mutual information and the result will therefore be
0. In the case of uniform distribution with complete dependence, mutual information will be equal to
:math:`\log_2(N_g)`.
Finally, :math:`HXY - HXY1` is divided by the maximum of the 2 marginal entropies, where in the latter case of
complete dependence (not necessarily uniform; low complexity) it will result in :math:`IMC1 = -1`, as
:math:`HX = HY = I(i, j)`.
.. note::
In the case where both HX and HY are 0 (as is the case in a flat region), an arbitrary value of 0 is returned to
prevent a division by 0. This is done on a per-angle basis (i.e. prior to any averaging).
"""
HXY = self.coefficients['HXY']
eps = self.coefficients['eps']
px = self.coefficients['px']
py = self.coefficients['py']
# entropy of px # shape = (Nv, angles)
HX = (-1) * numpy.sum((px * numpy.log2(px + eps)), (1, 2))
# entropy of py # shape = (Nv, angles)
HY = (-1) * numpy.sum((py * numpy.log2(py + eps)), (1, 2))
# shape = (Nv, angles)
HXY1 = (-1) * numpy.sum((self.P_glcm * numpy.log2(px * py + eps)), (1, 2))
div = numpy.fmax(HX, HY)
imc1 = HXY - HXY1
imc1[div != 0] /= div[div != 0]
imc1[div == 0] = 0 # Set elements that would be divided by 0 to 0
return numpy.nanmean(imc1, 1)
def getImc2FeatureValue(self):
r"""
**14. Informational Measure of Correlation (IMC) 2**
.. math::
\textit{IMC 2} = \displaystyle\sqrt{1-e^{-2(HXY2-HXY)}}
IMC2 also assesses the correlation between the probability distributions of :math:`i` and :math:`j` (quantifying the
complexity of the texture). Of interest is to note that :math:`HXY1 = HXY2` and that :math:`HXY2 - HXY \geq 0`
represents the mutual information of the 2 distributions. Therefore, the range of IMC2 = [0, 1), with 0 representing
the case of 2 independent distributions (no mutual information) and the maximum value representing the case of 2
fully dependent and uniform distributions (maximal mutual information, equal to :math:`\log_2(N_g)`). In this latter
case, the maximum value is then equal to :math:`\displaystyle\sqrt{1-e^{-2\log_2(N_g)}}`, approaching 1.
.. note::
Due to machine precision errors, it is possble that HXY > HXY2, which would result in returning complex numbers.
In these cases, a value of 0 is returned for IMC2. This is done on a per-angle basis (i.e. prior to any
averaging).
"""
HXY = self.coefficients['HXY']
eps = self.coefficients['eps']
px = self.coefficients['px']
py = self.coefficients['py']
# shape = (Nv, angles)
HXY2 = (-1) * numpy.sum(((px * py) * numpy.log2(px * py + eps)), (1, 2))
imc2 = (1 - numpy.e ** (-2 * (HXY2 - HXY))) ** 0.5
imc2[HXY2 == HXY] = 0
return numpy.nanmean(imc2, 1)
def getIdmFeatureValue(self):
r"""
**15. Inverse Difference Moment (IDM)**
.. math::
\textit{IDM} = \displaystyle\sum^{N_g-1}_{k=0}{\frac{p_{x-y}(k)}{1+k^2}}
IDM (a.k.a Homogeneity 2) is a measure of the local
homogeneity of an image. IDM weights are the inverse of the Contrast
weights (decreasing exponentially from the diagonal i=j in the GLCM).
"""
pxSuby = self.coefficients['pxSuby']
kValuesDiff = self.coefficients['kValuesDiff']
idm = numpy.sum(pxSuby / (1 + (kValuesDiff[None, :, None] ** 2)), 1)
return numpy.nanmean(idm, 1)
def getMCCFeatureValue(self):
r"""
**16. Maximal Correlation Coefficient (MCC)**
.. math::
\textit{MCC} = \sqrt{\text{second largest eigenvalue of Q}}
Q(i, j) = \displaystyle\sum^{N_g}_{k=0}{\frac{p(i,k)p(j, k)}{p_x(i)p_y(k)}}
The Maximal Correlation Coefficient is a measure of complexity of the texture and :math:`0 \leq MCC \leq 1`.
In case of a flat region, each GLCM matrix has shape (1, 1), resulting in just 1 eigenvalue. In this case, an
arbitrary value of 1 is returned.
"""
px = self.coefficients['px']
py = self.coefficients['py']
eps = self.coefficients['eps']
# Calculate Q (shape (i, i, d)). To prevent division by 0, add epsilon (such a division can occur when in a ROI
# along a certain angle, voxels with gray level i do not have neighbors
Q = ((self.P_glcm[:, :, None, 0, :] * self.P_glcm[:, None, :, 0, :]) / # slice: v, i, j, k, d
(px[:, :, None, 0, :] * py[:, None, :, 0, :] + eps)) # sum over k (4th axis --> index 3)
for gl in range(1, self.P_glcm.shape[1]):
Q += ((self.P_glcm[:, :, None, gl, :] * self.P_glcm[:, None, :, gl, :]) / # slice: v, i, j, k, d
(px[:, :, None, 0, :] * py[:, None, :, gl, :] + eps)) # sum over k (4th axis --> index 3)
# calculation of eigenvalues if performed on last 2 dimensions, therefore, move the angles dimension (d) forward
Q_eigenValue = numpy.linalg.eigvals(Q.transpose((0, 3, 1, 2)))
Q_eigenValue.sort() # sorts along last axis --> eigenvalues, low to high
if Q_eigenValue.shape[2] < 2:
return 1 # flat region
MCC = numpy.sqrt(Q_eigenValue[:, :, -2]) # 2nd highest eigenvalue
return numpy.nanmean(MCC, 1).real
def getIdmnFeatureValue(self):
r"""
**17. Inverse Difference Moment Normalized (IDMN)**
.. math::
\textit{IDMN} = \displaystyle\sum^{N_g-1}_{k=0}{ \frac{p_{x-y}(k)}{1+\left(\frac{k^2}{N_g^2}\right)} }
IDMN (inverse difference moment normalized) is a measure of the local
homogeneity of an image. IDMN weights are the inverse of the Contrast
weights (decreasing exponentially from the diagonal :math:`i=j` in the GLCM).
Unlike Homogeneity2, IDMN normalizes the square of the difference between
neighboring intensity values by dividing over the square of the total
number of discrete intensity values.
"""
pxSuby = self.coefficients['pxSuby']
kValuesDiff = self.coefficients['kValuesDiff']
Ng = self.coefficients['Ng']
idmn = numpy.sum(pxSuby / (1 + ((kValuesDiff[None, :, None] ** 2) / (Ng ** 2))), 1)
return numpy.nanmean(idmn, 1)
def getIdFeatureValue(self):
r"""
**18. Inverse Difference (ID)**
.. math::
\textit{ID} = \displaystyle\sum^{N_g-1}_{k=0}{\frac{p_{x-y}(k)}{1+k}}
ID (a.k.a. Homogeneity 1) is another measure of the local homogeneity of an image.
With more uniform gray levels, the denominator will remain low, resulting in a higher overall value.
"""
pxSuby = self.coefficients['pxSuby']
kValuesDiff = self.coefficients['kValuesDiff']
invDiff = numpy.sum(pxSuby / (1 + kValuesDiff[None, :, None]), 1)
return numpy.nanmean(invDiff, 1)
def getIdnFeatureValue(self):
r"""
**19. Inverse Difference Normalized (IDN)**
.. math::
\textit{IDN} = \displaystyle\sum^{N_g-1}_{k=0}{ \frac{p_{x-y}(k)}{1+\left(\frac{k}{N_g}\right)} }
IDN (inverse difference normalized) is another measure of the local
homogeneity of an image. Unlike Homogeneity1, IDN normalizes the difference
between the neighboring intensity values by dividing over the total number
of discrete intensity values.
"""
pxSuby = self.coefficients['pxSuby']
kValuesDiff = self.coefficients['kValuesDiff']
Ng = self.coefficients['Ng']
idn = numpy.sum(pxSuby / (1 + (kValuesDiff[None, :, None] / Ng)), 1)
return numpy.nanmean(idn, 1)
def getInverseVarianceFeatureValue(self):
r"""
**20. Inverse Variance**
.. math::
\textit{inverse variance} = \displaystyle\sum^{N_g-1}_{k=1}{\frac{p_{x-y}(k)}{k^2}}
Note that :math:`k=0` is skipped, as this would result in a division by 0.
"""
pxSuby = self.coefficients['pxSuby']
kValuesDiff = self.coefficients['kValuesDiff']
inv = numpy.sum(pxSuby[:, 1:, :] / kValuesDiff[None, 1:, None] ** 2, 1) # Skip k = 0 (division by 0)
return numpy.nanmean(inv, 1)
def getMaximumProbabilityFeatureValue(self):
r"""
**21. Maximum Probability**
.. math::
\textit{maximum probability} = \max\big(p(i,j)\big)
Maximum Probability is occurrences of the most predominant pair of
neighboring intensity values.
.. note::
Defined by IBSI as Joint maximum
"""
maxprob = numpy.amax(self.P_glcm, (1, 2))
return numpy.nanmean(maxprob, 1)
def getSumAverageFeatureValue(self):
r"""
**22. Sum Average**
.. math::
\textit{sum average} = \displaystyle\sum^{2N_g}_{k=2}{p_{x+y}(k)k}
Sum Average measures the relationship between occurrences of pairs
with lower intensity values and occurrences of pairs with higher intensity
values.
.. warning::
When GLCM is symmetrical, :math:`\mu_x = \mu_y`, and therefore :math:`\text{Sum Average} = \mu_x + \mu_y =
2 \mu_x = 2 * Joint Average`. See formulas (4.), (5.) and (6.) defined
:ref:`here <radiomics-excluded-sumvariance-label>` for the proof that :math:`\text{Sum Average} = \mu_x + \mu_y`.
In the default parameter files provided in the ``examples/exampleSettings``, this feature has been disabled.
"""
# warn the user if the GLCM is symmetrical and this feature is calculated (as it is then linearly correlated to Joint Average)
if self.symmetricalGLCM:
self.logger.warning('GLCM is symmetrical, therefore Sum Average = 2 * Joint Average, only 1 needs to be calculated')
pxAddy = self.coefficients['pxAddy']
kValuesSum = self.coefficients['kValuesSum']
sumavg = numpy.sum((kValuesSum[None, :, None] * pxAddy), 1)
return numpy.nanmean(sumavg, 1)
@deprecated
def getSumVarianceFeatureValue(self):
r"""
**DEPRECATED. Sum Variance**
.. math::
\textit{sum variance} = \displaystyle\sum^{2N_g}_{k=2}{(k-SA)^2p_{x+y}(k)}
.. warning::
This feature has been deprecated, as it is mathematically equal to Cluster Tendency
:py:func:`~radiomics.glcm.RadiomicsGLCM.getClusterTendencyFeatureValue()`.
See :ref:`here <radiomics-excluded-sumvariance-label>` for the proof. **Enabling this feature will result in the
logging of a DeprecationWarning (does not interrupt extraction of other features), no value is calculated for this features**
"""
raise DeprecationWarning('GLCM - Sum Variance is mathematically equal to GLCM - Cluster Tendency, '
'see http://pyradiomics.readthedocs.io/en/latest/removedfeatures.html for more details')
def getSumEntropyFeatureValue(self):
r"""
**23. Sum Entropy**
.. math::
\textit{sum entropy} = \displaystyle\sum^{2N_g}_{k=2}{p_{x+y}(k)\log_2\big(p_{x+y}(k)+\epsilon\big)}
Sum Entropy is a sum of neighborhood intensity value differences.
"""
pxAddy = self.coefficients['pxAddy']
eps = self.coefficients['eps']
sumentr = (-1) * numpy.sum((pxAddy * numpy.log2(pxAddy + eps)), 1)
return numpy.nanmean(sumentr, 1)
def getSumSquaresFeatureValue(self):
r"""
**24. Sum of Squares**
.. math::
\textit{sum squares} = \displaystyle\sum^{N_g}_{i=1}\displaystyle\sum^{N_g}_{j=1}{(i-\mu_x)^2p(i,j)}
Sum of Squares or Variance is a measure in the distribution of neigboring intensity level pairs
about the mean intensity level in the GLCM.
.. warning::
This formula represents the variance of the distribution of :math:`i` and is independent from the distribution
of :math:`j`. Therefore, only use this formula if the GLCM is symmetrical, where
:math:`p_x(i) = p_y(j) \text{, where } i = j`
.. note::
Defined by IBSI as Joint Variance
"""
if not self.symmetricalGLCM:
self.logger.warning('The formula for GLCM - Sum of Squares assumes that the GLCM is symmetrical, but this is not the case.')
i = self.coefficients['i']
ux = self.coefficients['ux']
# Also known as Variance
ss = numpy.sum((self.P_glcm * ((i[None, :, :, None] - ux) ** 2)), (1, 2))
return numpy.nanmean(ss, 1)