-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathComplexBC.m
242 lines (209 loc) · 6.92 KB
/
ComplexBC.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
% A simple script to plot complex Bernoulli convolutions by iterating polygons
%
% Zhou Feng @ 2024-06-05
clc, clf, clear
tic
%% settings
theta = 1/pi;
rho = 4/5;
% IFS linear parts
linearMats = {rho * [cos(theta * 2 * pi) -sin(theta * 2 * pi); sin(theta * 2 * pi) cos(theta * 2 * pi)],...
rho * [cos(theta * 2 * pi) -sin(theta * 2 * pi); sin(theta * 2 * pi) cos(theta * 2 * pi)]};
% IFS translations
translations = {[-1; 0], ...
[1; 0]};
% initial polygon for iteration
shapeInit = [0 1 1 0;
0 0 1 1];
numItrs = 14; % iteration time
% plot settings
showTitle = true;
showFirstItrs = false;
numFirstItrs = 2;
alphaFaces = 1;
colorFaces = 'k';
colorEdges = 'none';
fixAxisRatio = true;
%% Examples
% ---------------------------------- gaskets --------------------------------- %
% % Sierpinski gasket
% cRatio = 1/2;
% linearMats = cell(1, 3);
% for i = 1:3
% linearMats{i} = cRatio * eye(2);
% end
% translations = {[0; 0], [cRatio; 0], [0; cRatio]};
% shapeInit = [0 1 0; 0 0 1];
% % Sierpinski gasket (self-affine)
% hRatio = 0.25;
% vRatio = 0.7;
% linearMats = {[hRatio 0; 0 vRatio],
% [1 - hRatio 1 - hRatio - vRatio; 0 vRatio],
% [1 - vRatio 0; 0 1 - vRatio]};
% translations = {[0; 0], [hRatio; 0], [0; vRatio]};
% shapeInit = [0 1 0; 0 0 1];
% ---------------------------------- carpets --------------------------------- %
% % Sierpinski carpet
% linearMats = cell(1, 8);
% for i = 1:8
% linearMats{i} = 1/3 * eye(2);
% end
% translations = {[0;0], [1;0], [2;0], [0;1], [2;1], [0;2], [1;2], [2;2]};
% shapeInit = [0 3 3 0; 0 0 3 3];
% % Bedford-McMullen carpet
% BMselect = [1 0 0;
% 0 1 0;
% 0 0 1;
% 1 0 0]; % select positions
% [BMv, BMh] = size(BMselect);
% BMmat = flipud(BMselect);
% [oneRows, oneCols] = find(BMmat > 0);
% BMsize = length(oneRows);
% BMlinear = [1 / BMh 0; 0 1 / BMv];
% linearMats = cell(1, BMsize);
% translations = cell(1, BMsize);
% for i = 1:BMsize
% linearMats{i} = BMlinear;
% translations{i} = [(oneCols(i) - 1) * (1 / BMh); (oneRows(i) - 1) * (1 / BMv)];
% end
% shapeInit = [0 1 1 0; 0 0 1 1];
% % Baranski carpet (with possible overlaps)
% Bar_h = [0.1 0.3 0.4 0.2]; % horizontal scales
% Bar_v = [0.1 0.2 0.4 0.3]; % vertical scales
% Bar_select = [1 0 1 0;
% 0 1 0 1;
% 0 0 0 0;
% 0 0 1 0]; % select positions
% Bar_mat = flipud(Bar_select);
% [oneRows, oneCols] = find(Bar_mat > 0);
% Bar_size = length(oneRows);
% linearMats = cell(1, Bar_size);
% translations = cell(1, Bar_size);
% for i = 1:Bar_size
% linearMats{i} = [Bar_h(oneCols(i)) 0; 0 Bar_v(oneRows(i))];
% translations{i} = [sum(Bar_h(1:oneCols(i))) - Bar_h(oneCols(i));...
% sum(Bar_v(1:oneRows(i))) - Bar_v(oneRows(i))];
% end
% shapeInit = [0 1 1 0; 0 0 1 1];
% --------------------------------- triangles -------------------------------- %
% % Sierpinski triangle
% cRatio = 1/2;
% linearMats = cell(1, 3);
% for i = 1:3
% linearMats{i} = cRatio * eye(2);
% end
% translations = {[0; 0], [1-cRatio; 0], [0.5*(1-cRatio); (1-cRatio)*0.5*sqrt(3)]};
% shapeInit = [0 1 0.5; 0 0 0.5*sqrt(3)];
% % Sierpinski triangle (self-affine)
% ratio1st = 2/3;
% ratio2nd = 2/3;
% linearMats = {[ratio1st * (1 - ratio2nd) ratio1st * (2 * ratio2nd - 1) / sqrt(3);...
% 0 ratio1st * ratio2nd], ...
% [ratio1st * (1 - ratio2nd) 0; 0 ratio1st * (1 - ratio2nd)], ...
% [ratio1st * ratio2nd 0; 0 ratio1st * ratio2nd], ...
% [1 - ratio1st 0; 0 1 - ratio1st], ...
% [1/2 (1/2 - ratio1st) / sqrt(3); sqrt(3) / 2 - sqrt(3) * ratio1st 1/2]};
% translations = {[0; 0], [ratio1st * ratio2nd / 2; ratio1st * ratio2nd * sqrt(3) / 2],...
% [ratio1st * (1 - ratio2nd); 0], ...
% [ratio1st; 0], [ratio1st / 2; ratio1st * sqrt(3) / 2]};
% shapeInit = [0 1 0.5; 0 0 0.5 * sqrt(3)];
% ----------------------------------- dusts ---------------------------------- %
% % Cantor dust
% linearMats = cell(1, 4);
% for i = 1:4
% linearMats{i} = 0.25 * eye(2);
% end
% translations = {[0.26; 0], ...
% [0.75; 0.25], ...
% [0; 0.5], ...
% [0.5; 0.75]};
% shapeInit = [0 1 1 0; 0 0 1 1];
% % product Cantor set
% linearMats = cell(1, 4);
% for i = 1:4
% linearMats{i} = 1/3 * eye(2);
% end
% translations = {[0; 0], [2/3; 0], [0; 2/3], [2/3; 2/3]};
% shapeInit = [0 1 1 0; 0 0 1 1];
% ----------------------------------- misc ----------------------------------- %
% % Dim of self-affine sets is discontinuous
% ratioDimDiscts = 0.1;
% linearMats = {[0.5 0; 0 1/3], [0.5 0; 0 1/3]};
% translations = {[0; 2/3], [ratioDimDiscts; 0]};
% shapeInit = [0 1 1 0; 0 0 1 1];
% % attenna
% linearMats = {[0.25 0; 0 0.25], [0.25 0; 0 0.25], [0.25 0; 0 0.25],...
% [0.25 0; 0 0.25], [0.5 0; 0 0.5]};
% translations = {[0; 0], [0.75; 0], [0.75; 0.75], [0; 0.75], [0.25; 0.25]};
% shapeInit = [0 1 1 0; 0 0 1 1];
%% Error handling
isCompactible = false;
if length(linearMats) == length(translations)
isCompactible = true;
end
if ~isCompactible
error('Illegal settings. Dimensions of the parameters does not match!')
end
% generate params
spaceDim = 2;
numInitFaces = 1;
sizeIFS = length(linearMats);
numInitPts = size(shapeInit, 2);
shapeInitFaces = 1:numInitPts;
%% Generate points
ptsInit = shapeInit;
ptsNow = ptsInit;
sizeNow = numInitPts;
ptsTotal = cell(numItrs + 1, 1);
ptsTotal{1} = ptsInit;
for levelNow = 1:numItrs
ptsTmp = zeros(spaceDim, sizeNow * sizeIFS);
for indexFct = 1:sizeIFS
ptsTmp(:, (indexFct - 1) * sizeNow + 1:indexFct * sizeNow) = ...
linearMats{indexFct} * ptsNow + translations{indexFct};
end
ptsNow = ptsTmp;
sizeNow = size(ptsNow, 2);
ptsTotal{levelNow + 1} = ptsNow;
end
%% Plot
numShapes = sizeNow / numInitPts;
facesPlot = kron(ones(numShapes, 1), shapeInitFaces) + ...
kron((0:(numShapes - 1))' * numInitPts, ones(numInitFaces, 1));
figure(1)
patch('Faces', facesPlot, ...
'Vertices', ptsNow', ...
'FaceColor', colorFaces, ...
'EdgeColor', colorEdges, ...
'FaceAlpha', alphaFaces)
set(gca, 'XColor', 'none', 'YColor', 'none')
if fixAxisRatio
axis image
end
if showTitle
title(['Iteration time = ', num2str(numItrs)], 'Interpreter', 'latex');
end
if showFirstItrs && numItrs >= numFirstItrs
figure(2)
for i = 1:numFirstItrs
subplot(1, numFirstItrs, i)
sizeTmp = size(ptsTotal{i}, 2);
numShapesTmp = sizeTmp / numInitPts;
facesPlot = kron(ones(numShapesTmp, 1), shapeInitFaces) + ...
kron((0:(numShapesTmp - 1))' * numInitPts, ones(numInitFaces, 1));
patch('Faces', facesPlot, ...
'Vertices', ptsTotal{i}', ...
'FaceColor', colorFaces, ...
'EdgeColor', colorEdges, ...
'FaceAlpha', alphaFaces)
set(gca, 'XColor', 'none', 'YColor', 'none')
if fixAxisRatio
axis image
end
end
end
%% Show param
countPtsTotal = sizeNow;
countShapesTotal = numShapes;
tableResults = table(countPtsTotal, countShapesTotal);
disp(tableResults)