You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hi, thank you for releasing the code. I have a question that looking forward to your answers:
This PCA code, in my opinion, reduces the dimensionality of the features (K*K) and proves the redundancy of the features within each kernel, how is the intra-kernel correlations derived from this?
step 1: split 3D kernel F into 2D kernels (assuming F is of size CxHxW)
xs = [F[nChannel, :, :].flatten() for nChannel in range(F.shape[0])]
X = np.array(xs)
Hi, thank you for releasing the code. I have a question that looking forward to your answers:
This PCA code, in my opinion, reduces the dimensionality of the features (K*K) and proves the redundancy of the features within each kernel, how is the intra-kernel correlations derived from this?
The text was updated successfully, but these errors were encountered: