-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
497 lines (421 loc) · 20.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
import argparse
import re
import os
import time
import math
import bisect
from contextlib import contextmanager
from collections import OrderedDict
from utils import random_seed, create_result_dir, Logger, TableLogger, AverageMeter
from attack import AttackPGD
from ell_inf_models import *
from core.modules import NormDistBase
from torch.nn.functional import cross_entropy
from torch.optim import Adam
parser = argparse.ArgumentParser(description='L-infinity Dist Net')
parser.add_argument('--dataset', default='CIFAR10', type=str)
parser.add_argument('--model', default='MLPModel(depth=6,width=5120,identity_val=10.0, scalar=True)', type=str)
parser.add_argument('--loss', default='mixture', type=str)
parser.add_argument('--p-start', default=8.0, type=float)
parser.add_argument('--p-end', default=1000.0, type=float)
parser.add_argument('--eps-train', default=None, type=float)
parser.add_argument('--eps-test', default=None, type=float)
parser.add_argument('--eps-smooth', default=0, type=float)
parser.add_argument('--epochs', default='0,0,100,1250,1300', type=str)
# corresponding to: eps_start, eps_end, p_start, p_end, total
parser.add_argument('--decays', default=None, type=str)
parser.add_argument('-b', '--batch-size', default=512, type=int)
parser.add_argument('--lr', default=0.03, type=float)
parser.add_argument('--scalar-lr', default=0.006, type=float)
parser.add_argument('--beta1', default=0.9, type=float)
parser.add_argument('--beta2', default=0.99, type=float)
parser.add_argument('--epsilon', default=1e-10, type=float)
parser.add_argument('--start-epoch', default=0, type=int)
parser.add_argument('--checkpoint', default=None, type=str)
parser.add_argument('--gpu', default=-1, type=int, help='GPU id to use')
parser.add_argument('--dist-url', default='tcp://localhost:23456')
parser.add_argument('--world-size', default=1)
parser.add_argument('--rank', default=0)
parser.add_argument('-p', '--print-freq', default=200, type=int, metavar='N', help='print frequency')
parser.add_argument('--result-dir', default='result', type=str)
parser.add_argument('--filter-name', default='', type=str)
parser.add_argument('--seed', default=2021, type=int)
parser.add_argument('--visualize', action='store_true')
def cal_acc(outputs, targets):
predicted = torch.max(outputs.data, 1)[1]
return (predicted == targets).float().mean().item()
def parallel_reduce(*argv):
tensor = torch.FloatTensor(argv).cuda()
torch.distributed.all_reduce(tensor)
ret = tensor.cpu() / torch.distributed.get_world_size()
return ret.tolist()
@contextmanager
def eval(model):
state = [m.training for m in model.modules()]
model.eval()
yield
for m, s in zip(model.modules(), state):
m.train(s)
def train(net, up, down, loss_fun, epoch, train_loader, optimizer, schedule, logger, train_logger, gpu, parallel, print_freq):
batch_time, losses, correct_accs, certified_accs = [AverageMeter() for _ in range(4)]
start = time.time()
epoch_start_time = start
train_loader_len = len(train_loader)
for batch_idx, (inputs, targets) in enumerate(train_loader):
eps, p, mix, lr = schedule(epoch, batch_idx)
inputs = inputs.cuda(gpu, non_blocking=True)
targets = targets.cuda(gpu, non_blocking=True)
outputs, worst_outputs = net(inputs, targets=targets, eps=eps, up=up, down=down)
loss = loss_fun(outputs, worst_outputs, targets)
with torch.no_grad():
losses.update(loss.data.item(), targets.size(0))
correct_accs.update(cal_acc(outputs.data, targets), targets.size(0))
certified_accs.update(cal_acc(worst_outputs.data, targets), targets.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time() - start)
if (batch_idx + 1) % print_freq == 0 and logger is not None:
logger.print('Epoch: [{0}][{1}/{2}] '
'Time {batch_time.val:.3f} ({batch_time.avg:.3f}) '
'lr {lr:.4f} p {p:.2f} eps {eps:.4f} mix {mix:.4f} '
'Loss {loss.val:.4f} ({loss.avg:.4f}) '
'Acc {acc.val:.4f} ({acc.avg:.4f}) '
'Certified (fake) {cert.val:.4f} ({cert.avg:.4f})'.format(
epoch, batch_idx + 1, train_loader_len, batch_time=batch_time,
lr=lr, p=p, eps=eps, mix=mix, loss=losses, acc=correct_accs, cert=certified_accs))
start = time.time()
loss, acc, cert = losses.avg, correct_accs.avg, certified_accs.avg
if parallel:
loss, acc, cert = parallel_reduce(loss, acc, cert)
if train_logger is not None:
train_logger.log({'epoch': epoch, 'loss': loss, 'acc': acc, 'certified': cert})
if logger is not None:
eps, p, mix, lr = schedule(epoch, 0)
logger.print('Epoch {0}: train loss {loss:.4f} train acc {acc:.4f} worst {cert:.4f} '
'lr {lr:.4f} p {p:.2f} eps {eps:.4f} mix {mix:.4f} time {time:.2f}'.format(
epoch, loss=loss, acc=acc, cert=cert, lr=lr, p=p, eps=eps, mix=mix,
time=time.time() - epoch_start_time))
return loss, acc, cert
@torch.no_grad()
def test(net, epoch, test_loader, logger, test_logger, gpu, parallel, print_freq):
batch_time, accs = [AverageMeter() for _ in range(2)]
start = time.time()
epoch_start_time = start
test_loader_len = len(test_loader)
with eval(net):
for batch_idx, (inputs, targets) in enumerate(test_loader):
inputs = inputs.cuda(gpu, non_blocking=True)
targets = targets.cuda(gpu, non_blocking=True)
outputs = net(inputs)
accs.update(cal_acc(outputs, targets), targets.size(0))
batch_time.update(time.time() - start)
start = time.time()
if (batch_idx + 1) % print_freq == 0 and logger is not None:
logger.print('Test: [{0}/{1}] '
'Time {batch_time.val:.3f} ({batch_time.avg:.3f}) '
'Acc {acc.val:.4f} ({acc.avg:.4f})'.format(
batch_idx + 1, test_loader_len, batch_time=batch_time, acc=accs))
acc = accs.avg
if parallel:
acc = parallel_reduce(accs.avg)
if test_logger is not None:
test_logger.log({'epoch': epoch, 'acc': acc})
if logger is not None:
elapse = time.time() - epoch_start_time
logger.print('Epoch %d: ' % epoch + 'test acc ' + f'{acc:.4f}' + ' time ' + f'{elapse:.2f}')
return acc
def gen_adv_examples(net, attacker, test_loader, gpu, parallel, logger, fast=False):
correct = 0
tot_num = 0
size = len(test_loader)
with eval(net):
for batch_idx, (inputs, targets) in enumerate(test_loader):
inputs = inputs.cuda(gpu, non_blocking=True)
targets = targets.cuda(gpu, non_blocking=True)
result = torch.ones(targets.size(0), dtype=torch.bool, device=targets.device)
for i in range(1):
perturb = attacker.find(inputs, targets)
with torch.no_grad():
outputs = net(perturb)
predicted = torch.max(outputs.data, 1)[1]
result &= (predicted == targets)
correct += result.float().sum().item()
tot_num += inputs.size(0)
if fast and batch_idx * 10 >= size:
break
acc = correct / tot_num * 100
if parallel:
acc, = parallel_reduce(acc)
if logger is not None:
logger.print('adversarial attack acc ' + f'{acc:.4f}')
return acc
@torch.no_grad()
def certified_test(net, eps, up, down, epoch, test_loader, logger, certified_logger, gpu, parallel):
outputs = []
worst_outputs = []
labels = []
normdist_models = get_normdist_models(net)
cur_p = [m.p for m in normdist_models]
for m in normdist_models:
m.p = float('inf')
with eval(net):
for batch_idx, (inputs, targets) in enumerate(test_loader):
inputs = inputs.cuda(gpu, non_blocking=True)
targets = targets.cuda(gpu, non_blocking=True)
output, worst = net(inputs, targets=targets, eps=eps, up=up, down=down)
outputs.append(output)
worst_outputs.append(worst)
labels.append(targets)
outputs = torch.cat(outputs, dim=0)
worst_outputs = torch.cat(worst_outputs, dim=0)
labels = torch.cat(labels, dim=0)
correct = cal_acc(outputs, labels)
certified = cal_acc(worst_outputs, labels)
if parallel:
correct, certified = parallel_reduce(correct, certified)
if logger is not None:
logger.print('Epoch %d: ' % epoch + ' clean acc ' + f'{correct:.4f}' +
' certified acc ' + f'{certified:.4f}')
if certified_logger is not None:
certified_logger.log({'epoch': epoch, 'acc': correct, 'certified': certified})
for m, p in zip(normdist_models, cur_p):
m.p = p
return correct, certified
def parse_function_call(s):
s = re.split(r'[()]', s)
if len(s) == 1:
return s[0], {}
name, params, _ = s
params = re.split(r',\s*', params)
params = dict([p.split('=') for p in params])
for key, value in params.items():
try:
params[key] = int(value)
except ValueError:
try:
params[key] = float(value)
except ValueError:
special = {'True': True, 'False': False, 'None': None}
try:
params[key] = special[value]
except KeyError:
pass
return name, params
def get_normdist_models(model):
return [m for m in model.modules() if isinstance(m, NormDistBase)]
def create_schedule(args, batch_per_epoch, model, optimizer, loss, eps_schedule='linear'):
epoch_eps_start, epoch_eps_end, epoch_p_start, epoch_p_end, epoch_tot = args.epochs
if args.decays is not None:
decays = [int(epoch) for epoch in args.decays.split(',')]
else:
decays = None
speed_p = math.log(args.p_end / args.p_start)
lrs = [param_group['lr'] for param_group in optimizer.param_groups]
smooth_r = args.eps_smooth
def num_batches(epoch, minibatch=0):
return epoch * batch_per_epoch + minibatch
def cal_ratio(epoch, epoch_start, epoch_end, minibatch):
if epoch_end <= epoch_start:
return 1
return min(max(num_batches(epoch - epoch_start, minibatch) / num_batches(epoch_end - epoch_start), 0), 1)
def schedule(epoch, minibatch):
if decays is None:
ratio = cal_ratio(epoch, 0, epoch_tot, minibatch)
for param_group, lr in zip(optimizer.param_groups, lrs):
param_group['lr'] = 0.5 * lr * (1 + math.cos((ratio * math.pi)))
else:
index = bisect.bisect_right(decays, epoch)
for param_group, lr in zip(optimizer.param_groups, lrs):
param_group['lr'] = lr / (5 ** index)
ratio = cal_ratio(epoch, epoch_p_start, epoch_p_end, minibatch)
if ratio >= 1 and args.p_end >= 100:
p_norm = float('inf')
else:
p_norm = args.p_start * math.exp(speed_p * ratio)
for m in get_normdist_models(model):
m.p = p_norm
ratio = cal_ratio(epoch, epoch_eps_start, epoch_eps_end, minibatch)
if eps_schedule == 'linear' or smooth_r == 0:
cur_eps = args.eps_train * ratio
elif eps_schedule == 'smooth':
k = 1 / ((4 - 3 * smooth_r) * smooth_r ** 3)
if ratio < smooth_r:
cur_eps = k * ratio ** 4 * args.eps_train
else:
cur_eps = ((1 - k * smooth_r ** 4) / (1 - smooth_r) * (ratio - 1) + 1) * args.eps_train
else:
raise NotImplementedError
ratio = cal_ratio(epoch, epoch_p_start, epoch_p_end, minibatch)
if hasattr(loss, 'update'):
loss.update(ratio)
lam = loss.lam
else:
lam = 0
return cur_eps, p_norm, lam, optimizer.param_groups[0]['lr']
return schedule
class hinge():
def __init__(self, mix=0.25):
self.mix = mix
def __call__(self, outputs, worst_outputs, targets):
res = worst_outputs.clamp(min=0)
return (1 - self.mix) * res.max(dim=1)[0].mean() + self.mix * res.mean()
class crossentropy():
def __init__(self, mix=0):
self.mix = mix
def __call__(self, outputs, worst_outputs, targets):
return (1 - self.mix) * cross_entropy(worst_outputs, targets) + self.mix * cross_entropy(outputs, targets)
class mixture():
def __init__(self, lam0=0.1, lam_end=0.001, clip=1):
self.lam_start = lam0
self.lam_end = lam_end
self.lam = lam0
self.speed = math.log(self.lam_end / self.lam_start)
self.clip = clip
def update(self, ratio):
self.lam = self.lam_start * math.exp(self.speed * ratio)
def __call__(self, outputs, worst_outputs, targets):
res = worst_outputs.clamp(min=0, max=self.clip)
return res.max(dim=1)[0].mean() + self.lam * cross_entropy(outputs, targets)
def main_worker(gpu, parallel, args, result_dir):
if parallel:
args.rank = args.rank + gpu
torch.distributed.init_process_group(backend='nccl', init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
torch.backends.cudnn.benchmark = True
random_seed(args.seed + args.rank) # make data aug different for different processes
torch.cuda.set_device(gpu)
assert args.batch_size % args.world_size == 0
from dataset import load_data, get_statistics, default_eps, input_dim
train_loader, test_loader = load_data(args.dataset, 'data/', args.batch_size // args.world_size, parallel,
augmentation=True)
mean, std = get_statistics(args.dataset)
num_classes = len(train_loader.dataset.classes)
model_name, params = parse_function_call(args.model)
model = globals()[model_name](input_dim=input_dim[args.dataset], num_classes=num_classes, **params)
model = model.cuda(gpu)
if parallel:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[gpu])
if args.eps_test is None:
args.eps_test = default_eps[args.dataset]
if args.eps_train is None:
args.eps_train = args.eps_test
loss_name, params = parse_function_call(args.loss)
if loss_name == 'cross_entropy':
loss = cross_entropy
else:
loss = globals()[loss_name](**params)
output_flag = not parallel or gpu == 0
if output_flag:
logger = Logger(os.path.join(result_dir, 'log.txt'))
for arg in vars(args):
logger.print(arg, '=', getattr(args, arg))
logger.print(train_loader.dataset.transform)
logger.print(model)
logger.print('number of params: ', sum([p.numel() for p in model.parameters()]))
train_logger = TableLogger(os.path.join(result_dir, 'train.log'), ['epoch', 'loss', 'acc', 'certified'])
test_logger = TableLogger(os.path.join(result_dir, 'test.log'), ['epoch', 'acc'])
train_inf_logger = TableLogger(os.path.join(result_dir, 'train_inf.log'), ['epoch', 'acc', 'certified'])
test_inf_logger = TableLogger(os.path.join(result_dir, 'test_inf.log'), ['epoch', 'acc', 'certified'])
else:
logger = train_logger = test_logger = train_inf_logger = test_inf_logger = None
args.eps_train /= std
args.eps_test /= std
params = [
{'params': [p for name, p in model.named_parameters() if 'scalar' not in name], 'lr': args.lr},
{'params': [p for name, p in model.named_parameters() if 'scalar' in name], 'lr': args.scalar_lr},
]
optimizer = Adam(params, betas=(args.beta1, args.beta2), eps=args.epsilon)
if args.checkpoint:
assert os.path.isfile(args.checkpoint)
if parallel:
torch.distributed.barrier()
checkpoint = torch.load(args.checkpoint, map_location=lambda storage, loc: storage.cuda(gpu))
state_dict = checkpoint['state_dict']
if next(iter(state_dict)).startswith('module.') and not parallel:
new_state_dict = OrderedDict([(k[7:], v) for k, v in state_dict.items()])
state_dict = new_state_dict
elif not next(iter(state_dict)).startswith('module.') and parallel:
new_state_dict = OrderedDict([('module.' + k, v) for k, v in state_dict.items()])
state_dict = new_state_dict
model.load_state_dict(state_dict)
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded '{}'".format(args.checkpoint))
if parallel:
torch.distributed.barrier()
up = torch.FloatTensor((1 - mean) / std).view(-1, 1, 1).cuda(gpu)
down = torch.FloatTensor((0 - mean) / std).view(-1, 1, 1).cuda(gpu)
attacker = AttackPGD(model, args.eps_test, step_size=args.eps_test / 4, num_steps=100, up=up, down=down)
args.epochs = [int(epoch) for epoch in args.epochs.split(',')]
schedule = create_schedule(args, len(train_loader), model, optimizer, loss, 'smooth')
if args.visualize and output_flag:
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter(result_dir)
else:
writer = None
for epoch in range(args.start_epoch, args.epochs[-1]):
# if hasattr(model, 'scalar') and hasattr(model.scalar, 'item'):
# logger.print('scalar: ', round(model.scalar.item(), 4))
if parallel:
train_loader.sampler.set_epoch(epoch)
train_loss, train_acc, train_cert = train(model, up, down, loss, epoch, train_loader, optimizer, schedule,
logger, train_logger, gpu, parallel, args.print_freq)
if writer is not None:
writer.add_scalar('curve/p', get_normdist_models(model)[0].p, epoch)
writer.add_scalar('curve/train loss', train_loss, epoch)
writer.add_scalar('curve/train acc', train_acc, epoch)
writer.add_scalar('curve/train certified acc (fake)', train_cert, epoch)
if epoch % 5 == 4 or epoch >= args.epochs[-1] - 5:
test_acc = test(model, epoch, test_loader, logger, test_logger, gpu, parallel, args.print_freq)
if logger is not None:
logger.print('Calculating metrics for L_infinity dist model on training set')
train_inf_acc, train_inf_cert = certified_test(model, args.eps_test, up, down, epoch, train_loader,
logger, train_inf_logger, gpu, parallel)
if logger is not None:
logger.print('Calculating metrics for L_infinity dist model on test set')
test_inf_acc, test_inf_cert = certified_test(model, args.eps_test, up, down, epoch, test_loader,
logger, test_inf_logger, gpu, parallel)
if writer is not None:
writer.add_scalar('curve/test acc', test_acc, epoch)
writer.add_scalar('curve/train acc (inf model)', train_inf_acc, epoch)
writer.add_scalar('curve/train certified acc (inf model)', train_inf_cert, epoch)
writer.add_scalar('curve/test acc (inf model)', test_inf_acc, epoch)
writer.add_scalar('curve/test certified acc (inf model)', test_inf_cert, epoch)
if epoch >= args.epochs[-1] * 0.9 and (epoch % 50 == 49 or epoch >= args.epochs[-1] - 5):
if logger is not None:
logger.print('Generate adversarial examples on test dataset')
robust_test_acc = gen_adv_examples(model, attacker, test_loader, gpu, parallel, logger, fast=False)
if writer is not None:
writer.add_scalar('curve/robust test acc', robust_test_acc, epoch)
schedule(args.epochs[-1], 0)
logger.print('============Training completes===========')
if logger is not None:
logger.print('Generate adversarial examples on test dataset')
gen_adv_examples(model, attacker, test_loader, gpu, parallel, logger, fast=False)
if logger is not None:
logger.print('Calculating test acc and certified test acc')
certified_test(model, args.eps_test, up, down, args.epochs[-1], test_loader,
logger, test_inf_logger, gpu, parallel)
if output_flag:
torch.save({
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}, os.path.join(result_dir, 'model.pth'))
if writer is not None:
writer.close()
def main(father_handle, **extra_argv):
args = parser.parse_args()
for key, val in extra_argv.items():
setattr(args, key, val)
result_dir = create_result_dir(args)
if father_handle is not None:
father_handle.put(result_dir)
if args.gpu != -1:
main_worker(args.gpu, False, args, result_dir)
else:
n_procs = torch.cuda.device_count()
args.world_size *= n_procs
args.rank *= n_procs
torch.multiprocessing.spawn(main_worker, nprocs=n_procs, args=(True, args, result_dir))
if __name__ == '__main__':
main(None)