-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.Rmd
60 lines (46 loc) · 2.37 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, echo = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "README-"
)
```
# tensorr: sparse tensors in R
[![CRAN_Status_Badge](http://www.r-pkg.org/badges/version/tensorr)](https://cran.r-project.org/package=tensorr)
[![Build Status](https://travis-ci.org/zamorarr/tensorr.svg?branch=master)](https://travis-ci.org/zamorarr/tensorr)
[![AppVeyor Build Status](https://ci.appveyor.com/api/projects/status/github/zamorarr/tensorr?branch=master&svg=true)](https://ci.appveyor.com/project/zamorarr/tensorr)
[![Coverage Status](https://img.shields.io/codecov/c/github/zamorarr/tensorr/master.svg)](https://codecov.io/github/zamorarr/tensorr?branch=master)
`tensorr` provides methods to manipulate and store sparse tensors. Tensors are multi-dimensional generalizations of matrices (two dimensional) and vectors (one dimensional).
It has three main goals:
- Provide an efficient format to store sparse tensors in R.
- Provide standard tensor operations such as multiplication and unfolding.
- Provide standard tensor decomposition techniques such as CP and Tucker.
## Installation
The development version of **tensorr** is available on github.
```{r eval = FALSE}
devtools::install_github("zamorarr/tensorr")
```
## Usage
See the [introduction vignette](https://zamorarr.github.io/tensorr/articles/introduction.html)
for a comprehensive overview. To create a sparse tensor you have to provide the
non-zero values, subscripts to the non-zero values, and the overall dimensions
of the tensor.
```{r into-sparse, message = FALSE}
library(tensorr)
subs <- list(c(1,1,1), c(1,1,2))
vals <- c(10, 20)
dims <- c(2,2,2)
x <- sptensor(subs, vals, dims)
x
```
## Tensor References
Many of the dense and sparse implementation ideas were adpated from:
- B. W. Bader and T. G. Kolda. Algorithm 862: MATLAB tensor classes for fast algorithm prototyping, ACM Transactions on Mathematical Software 32(4):635-653, December 2006.
- B. W. Bader and T. G. Kolda. Efficient MATLAB computations with sparse and factored tensors, SIAM Journal on Scientific Computing 30(1):205-231, December 2007.
- [scikit-tensor](https://github.com/mnick/scikit-tensor)
For a review on tensors, see:
- T. G. Kolda and B. W. Bader, Tensor Decompositions and Applications, SIAM Review 51(3):455-500, September 2009