-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path38.py
43 lines (36 loc) · 1.2 KB
/
38.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# Problem 38
# Pandigital Multiples
# Take the number 192 and multiply it by each of 1, 2, and 3:
# 192 × 1 = 192
# 192 × 2 = 384
# 192 × 3 = 576
# By concatenating each product we get the 1 to 9 pandigital, 192384576. We will call 192384576 the concatenated product 192 of and (1, 2, 3).
# The same can be achieved by starting with 9 and multiplying by 1, 2, 3, 4, and 5, giving the pandigital, 918273645, which is the concatenated product of 9 and (1, 2, 3, 4, 5).
# What is the largest 1 to 9 pandigital 9-digit number that can be formed as the concatenated product of an integer with (1, 2, ..., n) where n > 1?
i = 1
answer = 0
def pandigital(all):
if len(all) != 9:
return False
for _ in "123456789":
if _ not in all:
return False
return True
while True:
n = 1
concatenatedProduct = []
while True:
for digit in str(i * n):
concatenatedProduct.append(digit)
if len(concatenatedProduct) < 9:
n += 1
else:
break
if pandigital(concatenatedProduct):
answer = max(answer, int("".join(concatenatedProduct)))
if i < 10000:
i += 1
else:
break
print(answer)
# 932718654