-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path21.py
75 lines (62 loc) · 1.83 KB
/
21.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# Problem 21
# Amicable Numbers
# Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n).
# If d(a) = b and d(b) = a, where a ≠ b, then a and b are an amicable pair and each of a and b are called amicable numbers.
# For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.
# Evaluate the sum of all the amicable numbers under 10000.
import itertools
amicableNumbers = []
max = 10000
def checkAmicable(n):
a = 0
b = 0
for number in factorise(n):
a += number
if a == n:
return False
for number in factorise(a):
b += number
if b == n:
return True
else:
return False
def factorise(number):
original = number
primeFactors = []
while True:
if number % 2 == 0:
primeFactors.append(2)
number /= 2
else:
break
for i in range(3, int(original), 2):
while True:
if number % i == 0:
primeFactors.append(i)
number /= i
else:
break
if number < i:
break
factors = []
for i in range(len(primeFactors) + 1):
for item in list(itertools.combinations(primeFactors, i)):
product = 1
for number in item:
product *= number
factors.append(product)
factors = list(dict.fromkeys(factors))
try:
factors.remove(original)
except ValueError:
pass
return factors
for i in range(2, max):
if i not in amicableNumbers:
if checkAmicable(i):
amicableNumbers.append(i)
answer = 0
for number in amicableNumbers:
answer += number
print(answer)
# 31626