Skip to content

Latest commit

 

History

History
81 lines (61 loc) · 10.1 KB

File metadata and controls

81 lines (61 loc) · 10.1 KB

Awesome visual place recognition (VPR) datasets

This repository provides a curated list of awesome datasets for Visual Place Recognition (VPR), which is also called loop closure detection (LCD). It is a significant component in V-SLAM (Visual Simultaneous Localization and Mapping) systems.

We will update the list if new VPR dataset is presented.

Our survey paper on deep learning-based visual place recognition contains detailed information about these datasets:

Xiwu Zhang, Lei Wang, and Yan Su. Visual Place Recognition: A Survey From Deep Learning Perspective. Pattern Recognition, November 2020, doi: https://doi.org/10.1016/j.patcog.2020.107760.

Dataset examples

Datasets used in VPR.

This list summarizes public available datasets that can be used for visual place recognition. We devide them into multiple categories according to different research topics, for example, long-term, across-seasons, semantic VPR and so on.

Topic Name Year Image type Environment Illumination Viewpoint Ground Truth Labels Extra Information
Generic New College and City Centre [1] 2008 RGB Outdoor slight ✔️ ✔️ ✔️ GPS
New College Vision and Laser [2] 2009 Gray. Outdoor slight ✔️ ✔️ GPS, IMU, LiDAR
Rawseeds 2006 RGB Indoor/Outdoor ✔️ ✔️ GPS, LiDAR
Ford Campus 2011 RGB Urban slight ✔️ GPS, IMU, LiDAR
Malaga Parking 6L 2009 RGB Outdoor ✔️ GPS, IMU, LiDAR
KITTI Odometry 2012 Gray./ RGB Urban slight ✔️ GPS, IMU, LiDAR
Long-term St. Lucia 2010 RGB Urban ✔️ slight GPS
COLD 2009 RGB Indoor ✔️ ✔️ ✔️ ✔️ LiDAR
Oxford RobotCar 2017 RGB Urban ✔️ ✔️ GPS, IMU, LiDAR
Gardens Point Walking 2014 RGB Indoor/ Outdoor ✔️ ✔️ -
MSLS 2020 RGB Urban ✔️ ✔️ ✔️ GPS
Across seasons Nurburgring and Alderley 2012 RGB Urban ✔️ ✔️ ✔️ -
Nordland 2013 RGB Outdoor ✔️ ✔️ GPS
CMU 2011 RGB Urban ✔️ ✔️ ✔️ GPS
Freiburg (FAS) 2014 RGB Urban ✔️ ✔️ ✔️ GPS
VPRiCE 2015 RGB Outdoor ✔️ ✔️ -
RGB-D TUM RGB-D 2012 RGB-D Indoor ✔️ ✔️ IMU
Microsoft 7-Scenes 2013 RGB-D Indoor ✔️ ✔️ ✔️ -
ICL-NUIM 2014 RGB-D Indoor ✔️ ✔️ -
Semantic KITTI Semantic 2019 RGB Urban ✔️ ✔️ GPS, IMU, LiDAR
Cityscapes 2016 RGB Urban ✔️ ✔️ GPS
CSC 2019 RGB Outdoor ✔️ ✔️ LiDAR
Train networks Cambridge Landmarks 2015 RGB Outdoor ✔️ ✔️ ✔️ ✔️ -
Pittsburgh250k 2013 RGB Urban ✔️ ✔️ ✔️ ✔️ GPS
Tokyo 24/7 2015 RGB Urban ✔️ ✔️ ✔️ GPS
SPED 2017 RGB Outdoor ✔️ ✔️ -
Omni-directional New College Vision and Laser 2009 Gray. Outdoor slight ✔️ ✔️ GPS, IMU, LiDAR
MOLP 2018 Gray./D Outdoor ✔️ ✔️ GPS
NCLT 2016 RGB Outdoor ✔️ ✔️ ✔️ GPS, LiDAR
Aerial/UAV Shopping Street 1/2 2018 Gray. Urban slight ✔️ ✔️ -
EuRoC 2016 Gray. Indoor ✔️ ✔️ IMU
Underwater UWSim 2016 RGB Under-water ✔️ GPS
Range sensors MulRan 2020 3D Point clouds Urban ✔️ ✔️ LiDAR, RADAR

Reference:

[1] Cummins, M. & Newman, P. FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance. The International Journal of Robotics Research, 2008, 27, 647-665

[2] M. Smith, I. Baldwin, W. Churchill, R. Paul, P. Newman, The new college vi- sion and laser data set, Int. J. Rob. Res. 28 (5) (2009) 595–599, doi: 10.1177/ 0278364909103911 .

  • TODO ...

Citations to this work:

@article{ZHANG2020107760,
title = "Visual place recognition: A survey from deep learning perspective",
journal = "Pattern Recognition",
pages = "107760",
year = "2020",
issn = "0031-3203",
doi = "https://doi.org/10.1016/j.patcog.2020.107760",
url = "http://www.sciencedirect.com/science/article/pii/S003132032030563X",
author = "Xiwu Zhang and Lei Wang and Yan Su",
}