-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_nn_conv2d.py
42 lines (33 loc) · 1.12 KB
/
test_nn_conv2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10("torchvision_dataset", train=False,
transform=torchvision.transforms.ToTensor(),
download=True)
dataloader = DataLoader(dataset, batch_size=64)
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.conv1 = Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=0)
def forward(self, x):
x = self.conv1(x)
return x
tudui_nn = Tudui()
print(tudui_nn)
writer = SummaryWriter("logsForTestNNConv2d")
step = 0
for data in dataloader:
imgs, targets = data
output = tudui_nn(imgs)
print(imgs.shape)
#torch.Size([64, 3, 32, 32])
print(output.shape)
#torch.Size([64, 6, 30, 30])
writer.add_images("input", imgs, step)
output = torch.reshape(output, (-1, 3, 30, 30))
writer.add_images("output",output, step)
step = step + 1
writer.close()