-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_dataLoader.py
38 lines (30 loc) · 1.27 KB
/
test_dataLoader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
test_data = torchvision.datasets.CIFAR10("torchvision_dataset", train=False,
transform=torchvision.transforms.ToTensor())
test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=True)
#看一下第一张图片和它的target
print(test_data.classes)
img, target = test_data[0]
print(img.shape)
print(target)
writer = SummaryWriter("logsForTestDataLoader")
writerAddImageStep = 0
# #取出每一个test_loader的返回
# for data in test_loader:
# imgs, targets = data
# # print(imgs.shape)
# # print(targets)
# writer.add_images("test_data_dropLastTrue", imgs, writerAddImageStep)
# writerAddImageStep = writerAddImageStep + 1
#Epoch:下一把牌,重新开始在数据集中摸牌,False则打乱顺序,True则不打乱,通过改变shuffle参数调整
for epoch in range(2):
writerAddImageStep = 0
for data in test_loader:
imgs, targets = data
# print(imgs.shape)
# print(targets)
writer.add_images("test_data_shufferTrue,epoch:{}".format(epoch), imgs, writerAddImageStep)
writerAddImageStep = writerAddImageStep + 1
writer.close()