-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
327 lines (289 loc) · 12 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import sys
sys.dont_write_bytecode = True
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # avoid tensorflow warnings
import re
import evaluate
from DialogueAPI import dialogue
import time
import argparse
import random
import numpy as np
from tqdm import tqdm
from typing import List, Union, Dict, Tuple
import torch
from transformers import (
AutoConfig,
AutoTokenizer,
BartTokenizer,
GPT2Tokenizer,
T5Tokenizer,
AutoModelForSeq2SeqLM,
AutoModelForCausalLM,
)
class EvalTransferAttack:
def __init__(
self,
args: argparse.Namespace = None,
tokenizer: Union[BartTokenizer, GPT2Tokenizer, T5Tokenizer] = None,
model: Union[AutoModelForSeq2SeqLM, AutoModelForCausalLM] = None,
device: torch.device = torch.device('cpu'),
task: str = 'seq2seq',
bleu: evaluate.load("bleu") = None,
rouge: evaluate.load("rouge") = None,
meteor: evaluate.load("meteor") = None,
):
self.args = args
self.num_beams = args.num_beams
self.num_beam_groups = args.num_beam_groups
self.max_source_length = args.max_len
self.max_target_length = args.max_len
self.dataset = open(args.file, 'r')
self.device = device
self.task = task
self.tokenizer = tokenizer
self.eos_token = self.tokenizer.eos_token
if self.task == 'seq2seq':
self.sp_token = self.eos_token
else:
self.sp_token = '<SEP>'
self.model = model.to(self.device)
self.dumb_instance = {
'history': None,
'orig_input': None,
'adv_input': None,
'reference': None,
}
self.bleu = bleu
self.rouge = rouge
self.meteor = meteor
self.ori_lens, self.adv_lens = [], []
self.ori_bleus, self.adv_bleus = [], []
self.ori_rouges, self.adv_rouges = [], []
self.ori_meteors, self.adv_meteors = [], []
self.ori_time, self.adv_time = [], []
self.att_success = 0
self.total_pairs = 0
out_dir = args.out_dir
dataset_n = args.dataset
orig_model_n = args.orig_model
victim_model_n = args.victim_model.split("/")[-1]
file_path = f"{out_dir}/transfer_{orig_model_n}_{victim_model_n}_{dataset_n}.txt"
self.write_file = open(file_path, "w")
def log_and_save(self, display: str):
print(display)
self.write_file.write(display + "\n")
def get_prediction(self, text: str):
if self.task == 'seq2seq':
effective_text = text
else:
effective_text = text + self.tokenizer.eos_token
inputs = self.tokenizer(
effective_text,
return_tensors="pt",
truncation=True,
max_length=self.max_source_length-1,
)
input_ids = inputs.input_ids.to(self.device)
t1 = time.time()
with torch.no_grad():
outputs = dialogue(
self.model,
input_ids,
early_stopping=False,
num_beams=self.num_beams,
num_beam_groups=self.num_beam_groups,
use_cache=True,
max_length=self.max_target_length,
)
if self.task == 'seq2seq':
output = self.tokenizer.batch_decode(outputs['sequences'], skip_special_tokens=True)[0]
else:
output = self.tokenizer.batch_decode(
outputs['sequences'][:, input_ids.shape[-1]:],
skip_special_tokens=True,
)[0]
t2 = time.time()
return output.strip(), t2 - t1
def eval_metrics(self, output: str, guided_messages: List[str]):
if not output:
return
bleu_res = self.bleu.compute(
predictions=[output],
references=[guided_messages],
smooth=True,
)
rouge_res = self.rouge.compute(
predictions=[output],
references=[guided_messages],
)
meteor_res = self.meteor.compute(
predictions=[output],
references=[guided_messages],
)
pred_len = bleu_res['translation_length']
return bleu_res, rouge_res, meteor_res, pred_len
def eval_step(
self,
ins: dict,
):
# Eval original
text = ins['history'] + self.sp_token + ins['orig_input']
references = [ins['reference']]
self.log_and_save("\nDialogue history: {}".format(ins['history']))
self.log_and_save("U--{} \n(Ref: ['{}', ...])".format(ins['orig_input'], references[-1]))
output, time_gap = self.get_prediction(text)
self.log_and_save("G--{}".format(output))
if not output:
return
bleu_res, rouge_res, meteor_res, pred_len \
= self.eval_metrics(output, references)
self.log_and_save("(length: {}, latency: {:.3f}, BLEU: {:.3f}, ROUGE: {:.3f}, METEOR: {:.3f})".format(
pred_len, time_gap, bleu_res['bleu'], rouge_res['rougeL'], meteor_res['meteor'],
))
self.ori_lens.append(pred_len)
self.ori_bleus.append(bleu_res['bleu'])
self.ori_rouges.append(rouge_res['rougeL'])
self.ori_meteors.append(meteor_res['meteor'])
self.ori_time.append(time_gap)
# Eval attack
adv_text = ins['history'] + self.sp_token + ins['adv_input']
adv_output, adv_time_gap = self.get_prediction(adv_text)
self.log_and_save("U'--{}".format(ins['adv_input']))
self.log_and_save("G'--{}".format(adv_output))
if not adv_output:
return
adv_bleu_res, adv_rouge_res, adv_meteor_res, adv_pred_len \
= self.eval_metrics(adv_output, references)
# ASR
success = (
(bleu_res['bleu'] > adv_bleu_res['bleu']) or
(rouge_res['rougeL'] > adv_rouge_res['rougeL']) or
(meteor_res['meteor'] > adv_meteor_res['meteor'])
)
if success:
self.att_success += 1
else:
self.log_and_save("Attack failed!")
self.log_and_save("(length: {}, latency: {:.3f}, BLEU: {:.3f}, ROUGE: {:.3f}, METEOR: {:.3f})".format(
adv_pred_len, adv_time_gap, adv_bleu_res['bleu'], adv_rouge_res['rougeL'], adv_meteor_res['meteor'],
))
self.adv_lens.append(adv_pred_len)
self.adv_bleus.append(adv_bleu_res['bleu'])
self.adv_rouges.append(adv_rouge_res['rougeL'])
self.adv_meteors.append(adv_meteor_res['meteor'])
self.adv_time.append(adv_time_gap)
self.total_pairs += 1
def eval(self):
idx = 0
data = []
for line in self.dataset:
if line.startswith('Dialogue history:'):
data.append(self.dumb_instance) # add a new instance
history = line.split('Dialogue history:')[1].strip()
if self.task == 'clm':
history = history.replace('<PS>', '').replace('<SEP>', ' ')
# print('history:', history)
data[idx]['history'] = history
elif line.startswith('U--'):
orig_input = line.split('U--')[1].strip()
# print('orig input:', orig_input)
data[idx]['orig_input'] = orig_input
elif line.startswith('(Ref: ['):
# remove the ref: and the ] at the end
ref = line.strip()[8:-8]
# print('reference:', ref)
data[idx]['reference'] = ref
elif line.startswith("U'--"):
# Remove the cosine similarity in paranthesis
adv_input = re.sub(r'\([^)]*\)', '', line.split("U'--")[1]).strip()
# print('adv input:', adv_input)
data[idx]['adv_input'] = adv_input
self.eval_step(data[idx])
idx += 1 # update the index
else:
continue
Ori_len = np.mean(self.ori_lens)
Adv_len = np.mean(self.adv_lens)
Ori_bleu = np.mean(self.ori_bleus)
Adv_bleu = np.mean(self.adv_bleus)
Ori_rouge = np.mean(self.ori_rouges)
Adv_rouge = np.mean(self.adv_rouges)
Ori_meteor = np.mean(self.ori_meteors)
Adv_meteor = np.mean(self.adv_meteors)
Ori_t = np.mean(self.ori_time)
Adv_t = np.mean(self.adv_time)
# Summarize eval results
self.log_and_save("\nOriginal output length: {:.3f}, latency: {:.3f}, BLEU: {:.3f}, ROUGE: {:.3f}, METEOR: {:.3f}".format(
Ori_len, Ori_t, Ori_bleu, Ori_rouge, Ori_meteor,
))
self.log_and_save("Perturbed output length: {:.3f}, latency: {:.3f}, BLEU: {:.3f}, ROUGE: {:.3f}, METEOR: {:.3f}".format(
Adv_len, Adv_t, Adv_bleu, Adv_rouge, Adv_meteor,
))
self.log_and_save("Attack success rate: {:.2f}%".format(100*self.att_success/self.total_pairs))
def main(args: argparse.Namespace):
random.seed(args.seed)
model_name_or_path = args.victim_model
num_beams = args.num_beams
num_beam_groups = args.num_beam_groups
out_dir = args.out_dir
if not os.path.exists(out_dir):
os.makedirs(out_dir)
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
# device = torch.device('cpu')
config = AutoConfig.from_pretrained(model_name_or_path, num_beams=num_beams, num_beam_groups=num_beam_groups)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
if 'gpt' in model_name_or_path.lower():
task = 'clm'
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, config=config)
if 'results' not in model_name_or_path.lower():
tokenizer.add_special_tokens({'pad_token': '<PAD>'})
tokenizer.add_special_tokens({'mask_token': '<MASK>'})
model.resize_token_embeddings(len(tokenizer))
else:
task = 'seq2seq'
model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path, config=config)
# Load evaluation metrics
bleu = evaluate.load("bleu")
rouge = evaluate.load("rouge")
meteor = evaluate.load("meteor")
# Transfer attack
transfer_attacker = EvalTransferAttack(
args=args,
tokenizer=tokenizer,
model=model,
device=device,
task=task,
bleu=bleu,
rouge=rouge,
meteor=meteor,
)
transfer_attacker.eval()
if __name__ == "__main__":
import ssl
import argparse
# import nltk
# nltk.download('wordnet')
# nltk.download('omw-1.4')
# nltk.download('averaged_perceptron_tagger')
ssl._create_default_https_context = ssl._create_unverified_context
parser = argparse.ArgumentParser()
parser.add_argument("--file", "-f", type=str, default="logging/eval_transfer_attack.txt", help="Path to file")
parser.add_argument("--num_beams", type=int, default=2, help="Number of beams")
parser.add_argument("--max_len", type=int, default=1024, help="Maximum length of generated sequence")
parser.add_argument("--num_beam_groups", type=int, default=1, help="Number of beam groups")
parser.add_argument("--orig_model", "-m", type=str, default="bart", help="Name of the original model")
parser.add_argument("--victim_model", "-v", type=str, default="results/bart", help="Path to the victim model")
parser.add_argument("--out_dir", type=str, default="results/logging", help="Output directory")
parser.add_argument("--seed", type=int, default=2019, help="Random seed")
parser.add_argument("--dataset", "-d", type=str,
default="BST",
choices=[
"BST",
"ConvAI2",
"ED",
"PC",
],
help="Dataset to attack")
args = parser.parse_args()
main(args)