-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathqm9_dataset.py
173 lines (135 loc) · 7.28 KB
/
qm9_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os
import os.path as osp
import numpy as np
from tqdm import tqdm
import torch
from sklearn.utils import shuffle
from rdkit import Chem
from torch_geometric.data import Data, DataLoader, InMemoryDataset, download_url, extract_zip
HAR2EV = 27.211386246
KCALMOL2EV = 0.04336414
conversion = torch.tensor([
1., 1., HAR2EV, HAR2EV, HAR2EV, 1., HAR2EV, HAR2EV, HAR2EV, HAR2EV, HAR2EV,
1., KCALMOL2EV, KCALMOL2EV, KCALMOL2EV, KCALMOL2EV, 1., 1., 1.
])
types = {'H': 0, 'C': 1, 'N': 2, 'O': 3, 'F': 4}
class QM93D(InMemoryDataset):
r"""
A `Pytorch Geometric <https://pytorch-geometric.readthedocs.io/en/latest/index.html>`_ data interface for :obj:`QM9` dataset
which is from `"Quantum chemistry structures and properties of 134 kilo molecules" <https://www.nature.com/articles/sdata201422>`_ paper.
It connsists of about 130,000 equilibrium molecules with 12 regression targets:
:obj:`mu`, :obj:`alpha`, :obj:`homo`, :obj:`lumo`, :obj:`gap`, :obj:`r2`, :obj:`zpve`, :obj:`U0`, :obj:`U`, :obj:`H`, :obj:`G`, :obj:`Cv`.
Each molecule includes complete spatial information for the single low energy conformation of the atoms in the molecule.
.. note::
Based on the code of `QM9 in Pytorch Geometric <https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/datasets/qm9.html#QM9>`_.
Args:
root (string): the dataset folder will be located at root/qm9.
transform (callable, optional): A function/transform that takes in an
:obj:`torch_geometric.data.Data` object and returns a transformed
version. The data object will be transformed before every access.
(default: :obj:`None`)
pre_transform (callable, optional): A function/transform that takes in
an :obj:`torch_geometric.data.Data` object and returns a
transformed version. The data object will be transformed before
being saved to disk. (default: :obj:`None`)
pre_filter (callable, optional): A function that takes in an
:obj:`torch_geometric.data.Data` object and returns a boolean
value, indicating whether the data object should be included in the
final dataset. (default: :obj:`None`)
Example:
--------
>>> dataset = QM93D()
>>> target = 'mu'
>>> dataset.data.y = dataset.data[target]
>>> split_idx = dataset.get_idx_split(len(dataset.data.y), train_size=110000, valid_size=10000, seed=42)
>>> train_dataset, valid_dataset, test_dataset = dataset[split_idx['train']], dataset[split_idx['valid']], dataset[split_idx['test']]
>>> train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
>>> data = next(iter(train_loader))
>>> data
Batch(Cv=[32], G=[32], H=[32], U=[32], U0=[32], alpha=[32], batch=[579], gap=[32], homo=[32], lumo=[32], mu=[32], pos=[579, 3], ptr=[33], r2=[32], y=[32], z=[579], zpve=[32])
Where the attributes of the output data indicates:
* :obj:`z`: The atom type.
* :obj:`pos`: The 3D position for atoms.
* :obj:`y`: The target property for the graph (molecule).
* :obj:`batch`: The assignment vector which maps each node to its respective graph identifier and can help reconstructe single graphs
"""
def __init__(self, root = 'dataset/', transform = None, pre_transform = None, pre_filter = None):
self.raw_url = ('https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/'
'molnet_publish/qm9.zip')
self.raw_url2 = 'https://ndownloader.figshare.com/files/3195404'
self.folder = osp.join(root, 'qm9')
super(QM93D, self).__init__(self.folder, transform, pre_transform, pre_filter)
self.data, self.slices = torch.load(self.processed_paths[0])
@property
def raw_file_names(self):
return ['gdb9.sdf', 'gdb9.sdf.csv', 'uncharacterized.txt']
@property
def processed_file_names(self):
return 'qm9_pyg.pt'
def download(self):
file_path = download_url(self.raw_url, self.raw_dir)
extract_zip(file_path, self.raw_dir)
os.unlink(file_path)
file_path = download_url(self.raw_url2, self.raw_dir)
os.rename(osp.join(self.raw_dir, '3195404'),
osp.join(self.raw_dir, 'uncharacterized.txt'))
def process(self):
with open(self.raw_paths[1], 'r') as f:
target = [[float(x) for x in line.split(',')[1:20]]
for line in f.read().split('\n')[1:-1]]
y = torch.tensor(target, dtype=torch.float)
y = torch.cat([y[:, 3:], y[:, :3]], dim=-1)
y = y * conversion.view(1, -1)
with open(self.raw_paths[2], 'r') as f:
skip = [int(x.split()[0]) - 1 for x in f.read().split('\n')[9:-2]]
suppl = Chem.SDMolSupplier(self.raw_paths[0], removeHs=False,
sanitize=False)
data_list = []
for i, mol in enumerate(tqdm(suppl)):
if i in skip:
continue
conf = mol.GetConformer()
pos = conf.GetPositions()
pos = torch.tensor(pos, dtype=torch.float)
posc = pos - pos.mean(dim=0)
atomic_number = []
for atom in mol.GetAtoms():
atomic_number.append(atom.GetAtomicNum())
z = torch.tensor(atomic_number, dtype=torch.long)
data = Data(
z=z,
pos=pos,
posc=posc,
y=y[i].unsqueeze(0),
mu=y[i][0], alpha=y[i][1], homo=y[i][2], lumo=y[i][3], gap=y[i][4], r2=y[i][5], zpve=y[i][6], U0=y[i][7], U=y[i][12], H=y[i][13], G=y[i][14], Cv=y[i][15]
)
data_list.append(data)
if self.pre_filter is not None:
data_list = [data for data in data_list if self.pre_filter(data)]
if self.pre_transform is not None:
data_list = [self.pre_transform(data) for data in data_list]
data, slices = self.collate(data_list)
print('Saving...')
torch.save((data, slices), self.processed_paths[0])
def get_idx_split(self, data_size, train_size, valid_size, seed):
ids = shuffle(range(data_size), random_state=seed)
train_idx, val_idx, test_idx = torch.tensor(ids[:train_size]), torch.tensor(ids[train_size:train_size + valid_size]), torch.tensor(ids[train_size + valid_size:])
split_dict = {'train':train_idx, 'valid':val_idx, 'test':test_idx}
return split_dict
if __name__ == '__main__':
dataset = QM93D(root='dataset/')
print(dataset)
print(dataset.data.z.shape)
print(dataset.data.pos.shape)
target = 'mu'
dataset.data.y = dataset.data[target]
print(dataset.data.y.shape)
print(dataset.data.y)
print(dataset.data.mu)
split_idx = dataset.get_idx_split(len(dataset.data.y), train_size=110000, valid_size=10000, seed=42)
print(split_idx)
print(dataset[split_idx['train']])
train_dataset, valid_dataset, test_dataset = dataset[split_idx['train']], dataset[split_idx['valid']], dataset[split_idx['test']]
train_loader = DataLoader(train_dataset, batch_size=2, shuffle=True)
data = next(iter(train_loader))
print(data)