-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain_md17.py
213 lines (168 loc) · 8.4 KB
/
main_md17.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
from md17_dataset import MD17
from model import LEFTNet
import sys, os
import argparse
import os
import torch
from torch.optim import Adam,AdamW
from torch_geometric.data import DataLoader
from torch.autograd import grad
from torch.utils.tensorboard import SummaryWriter
from torch.optim.lr_scheduler import StepLR,ReduceLROnPlateau,CosineAnnealingLR
from tqdm import tqdm
def run(device, train_dataset, valid_dataset, test_dataset, model, loss_func, eval_steps=50, eval_start=0,
epochs=800, batch_size=4, vt_batch_size=32, lr=0.0005, lr_decay_factor=0.5, lr_decay_step_size=50, weight_decay=0,
energy_and_force=True, p=100, save_dir='models/', log_dir=''):
model = model.to(device)
num_params = sum(p.numel() for p in model.parameters())
print('num_parameters:', num_params)
optimizer = AdamW(model.parameters(), lr=lr, weight_decay=weight_decay)
scheduler = StepLR(optimizer, step_size=lr_decay_step_size, gamma=lr_decay_factor)
train_loader = DataLoader(train_dataset, batch_size, shuffle=True)
valid_loader = DataLoader(valid_dataset, vt_batch_size, shuffle=False)
test_loader = DataLoader(test_dataset, vt_batch_size, shuffle=False)
best_valid = float('inf')
test_valid = float('inf')
start_epoch = 1
if save_dir != '':
if not os.path.exists(save_dir):
os.makedirs(save_dir)
if log_dir != '':
if not os.path.exists(log_dir):
os.makedirs(log_dir)
writer = SummaryWriter(log_dir=log_dir)
for epoch in range(start_epoch, epochs + 1):
print("=====Epoch {}".format(epoch), flush=True)
test_mae = float('inf')
train_mae = train(model, optimizer, train_loader, energy_and_force, p, loss_func, device)
valid_mae = val(model, valid_loader, energy_and_force, p, device)
if epoch > eval_start and epoch % eval_steps == 0:
print('Testing')
test_mae = val(model, test_loader, energy_and_force, p, device)
if log_dir != '':
writer.add_scalar('train_mae', train_mae, epoch)
writer.add_scalar('valid_mae', valid_mae, epoch)
writer.add_scalar('test_mae', test_mae, epoch)
if valid_mae < best_valid:
if epoch > eval_start and epoch % eval_steps != 0:
print('Testing')
test_mae = val(model, test_loader, energy_and_force, p, device)
best_valid = valid_mae
test_valid = test_mae
if save_dir != '':
print('Saving checkpoint...')
checkpoint = {'epoch': epoch, 'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(), 'best_valid_mae': best_valid,
'num_params': num_params}
torch.save(checkpoint, os.path.join(save_dir, 'valid_checkpoint.pt'))
print({'Train': train_mae, 'Validation': valid_mae, 'Test': test_mae, 'Best valid': best_valid})
scheduler.step()
print(f'Best validation MAE so far: {best_valid}')
print(f'Test MAE when got best validation result: {test_valid}')
if log_dir != '':
writer.close()
def train(model, optimizer, train_loader, energy_and_force, p, loss_func, device):
model.train()
loss_accum = 0
for step, batch_data in enumerate(tqdm(train_loader, disable=True)):
optimizer.zero_grad()
batch_data = batch_data.to(device)
out,forces = model(batch_data)
NUM_ATOM = batch_data.force.size()[0]
out = out * FORCE_MEAN_TOTAL + ENERGY_MEAN_TOTAL * NUM_ATOM
forces = forces * FORCE_MEAN_TOTAL
if energy_and_force:
force = -grad(outputs=out, inputs=batch_data.posc, grad_outputs=torch.ones_like(out), create_graph=True,
retain_graph=True)[0] + forces/1000
e_loss = loss_func(out, batch_data.y.unsqueeze(1))
f_loss = loss_func(force, batch_data.force)
loss = e_loss + p * f_loss
else:
loss = loss_func(out, batch_data.y.unsqueeze(1))
loss.backward()
optimizer.step()
loss_accum += loss.detach().cpu().item()
return loss_accum / (step + 1)
def val(model, data_loader, energy_and_force, p, device):
model.eval()
preds = torch.Tensor([]).to(device)
targets = torch.Tensor([]).to(device)
if energy_and_force:
preds_force = torch.Tensor([]).to(device)
targets_force = torch.Tensor([]).to(device)
for step, batch_data in enumerate(tqdm(data_loader, disable=True)):
batch_data = batch_data.to(device)
out, forces = model(batch_data)
out = out * FORCE_MEAN_TOTAL + ENERGY_MEAN_TOTAL * NUM_ATOM
forces = forces * FORCE_MEAN_TOTAL
if energy_and_force:
force = -grad(outputs=out, inputs=batch_data.posc, grad_outputs=torch.ones_like(out), create_graph=True,
retain_graph=True)[0] + forces/1000
if torch.sum(torch.isnan(force)) != 0:
mask = torch.isnan(force)
force = force[~mask].reshape((-1, 3))
batch_data.force = batch_data.force[~mask].reshape((-1, 3))
preds_force = torch.cat([preds_force, force.detach_()], dim=0)
targets_force = torch.cat([targets_force, batch_data.force], dim=0)
preds = torch.cat([preds, out.detach_()], dim=0)
targets = torch.cat([targets, batch_data.y.unsqueeze(1)], dim=0)
if energy_and_force:
energy_mae = torch.mean(torch.abs(preds - targets)).cpu().item()
force_mae = torch.mean(torch.abs(preds_force - targets_force)).cpu().item()
print({'Energy MAE': energy_mae, 'Force MAE': force_mae})
return energy_mae + p * force_mae
return torch.mean(torch.abs(preds - targets)).cpu().item()
parser = argparse.ArgumentParser(description='MD17')
parser.add_argument('--device', type=int, default=9)
parser.add_argument('--name', type=str, default='ethanol') #aspirin, benzene2017, ethanol, malonaldehyde, naphthalene, salicylic, toluene, uracil
parser.add_argument('--cutoff', type=float, default=8)
parser.add_argument('--num_layers', type=int, default=4)
parser.add_argument('--hidden_channels', type=int, default=200)
parser.add_argument('--num_radial', type=int, default=32)
parser.add_argument('--eval_steps', type=int, default=50)
parser.add_argument('--eval_start', type=int, default=500)
parser.add_argument('--epochs', type=int, default=1100)
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--vt_batch_size', type=int, default=32)
parser.add_argument('--lr', type=float, default=0.0004)
parser.add_argument('--lr_decay_factor', type=float, default=0.5)
parser.add_argument('--lr_decay_step_size', type=int, default=180)
parser.add_argument('--p', type=int, default=1000)
parser.add_argument('--save_dir', type=str, default='')
args = parser.parse_args()
print(args)
dataset = MD17(name=args.name, root = 'dataset/')
split_idx = dataset.get_idx_split(len(dataset.data.y), train_size=1000, valid_size=1000, seed=42)
y_mean = None
y_std = None
train_dataset, valid_dataset, test_dataset = dataset[split_idx['train']], dataset[split_idx['valid']], dataset[split_idx['test']]
device = f'cuda:{args.device}' if torch.cuda.is_available() else 'cpu'
device = torch.device(device)
print('device',device)
y_mean = 0
y_std = 1
force_mean = 0
ENERGY_MEAN_TOTAL = 0
FORCE_MEAN_TOTAL = 0
NUM_ATOM = None
for data in train_dataset:
energy = data.y
force = data.force
NUM_ATOM = force.size()[0]
energy_mean = energy / NUM_ATOM
ENERGY_MEAN_TOTAL += energy_mean
force_rms = torch.sqrt(torch.mean(force.square()))
FORCE_MEAN_TOTAL += force_rms
ENERGY_MEAN_TOTAL /= len(train_dataset)
FORCE_MEAN_TOTAL /= len(train_dataset)
ENERGY_MEAN_TOTAL = ENERGY_MEAN_TOTAL.to(device)
FORCE_MEAN_TOTAL = FORCE_MEAN_TOTAL.to(device)
model = LEFTNet(pos_require_grad=True, cutoff=args.cutoff, num_layers=args.num_layers,
hidden_channels=args.hidden_channels, num_radial=args.num_radial,y_mean=y_mean, y_std=y_std)
loss_func = torch.nn.L1Loss()
run(device, train_dataset, valid_dataset, test_dataset, model, loss_func,
eval_steps=args.eval_steps, eval_start=args.eval_start,
epochs=args.epochs, batch_size=args.batch_size, vt_batch_size=args.vt_batch_size,
lr=args.lr, lr_decay_factor=args.lr_decay_factor, lr_decay_step_size=args.lr_decay_step_size,
p=args.p, save_dir=args.save_dir)