-
Notifications
You must be signed in to change notification settings - Fork 146
/
Copy pathimg_utils.py
90 lines (80 loc) · 2.26 KB
/
img_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
"""Utility functions for process and visualize images"""
import numpy as np
import matplotlib.pyplot as plt
def show_img(img):
print img.shape, img.dtype
plt.imshow(img[:,:,0])
plt.ion()
plt.show()
raw_input()
def heatmap2d(hm_mat, title='', block=True, fig_num=1, text=True):
"""
Display heatmap
input:
hm_mat: mxn 2d np array
"""
print 'map shape: {}, data type: {}'.format(hm_mat.shape, hm_mat.dtype)
if block:
plt.figure(fig_num)
plt.clf()
# plt.imshow(hm_mat, cmap='hot', interpolation='nearest')
plt.imshow(hm_mat, interpolation='nearest')
plt.title(title)
plt.colorbar()
if text:
for y in range(hm_mat.shape[0]):
for x in range(hm_mat.shape[1]):
plt.text(x, y, '%.1f' % hm_mat[y, x],
horizontalalignment='center',
verticalalignment='center',
)
if block:
plt.ion()
print 'press enter to continue'
plt.show()
raw_input()
def heatmap3d(hm_mat, title=''):
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
#
# Assuming you have "2D" dataset like the following that you need
# to plot.
#
data_2d = hm_mat
#
# Convert it into an numpy array.
#
data_array = np.array(data_2d)
#
# Create a figure for plotting the data as a 3D histogram.
#
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
plt.title(title)
# _, ax = fig.add_subplot(111)
#
# Create an X-Y mesh of the same dimension as the 2D data. You can
# think of this as the floor of the plot.
#
x_data, y_data = np.meshgrid( np.arange(data_array.shape[1]),
np.arange(data_array.shape[0]) )
#
# Flatten out the arrays so that they may be passed to "ax.bar3d".
# Basically, ax.bar3d expects three one-dimensional arrays:
# x_data, y_data, z_data. The following call boils down to picking
# one entry from each array and plotting a bar to from
# (x_data[i], y_data[i], 0) to (x_data[i], y_data[i], z_data[i]).
#
x_data = x_data.flatten()
y_data = y_data.flatten()
z_data = data_array.flatten()
ax.bar3d( x_data,
y_data,
np.zeros(len(z_data)),
1, 1, z_data )
#
# Finally, display the plot.
#
plt.show()
raw_input()