-
Notifications
You must be signed in to change notification settings - Fork 146
/
Copy pathdeep_maxent_irl.py
176 lines (126 loc) · 5.37 KB
/
deep_maxent_irl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import numpy as np
import tensorflow as tf
import mdp.gridworld as gridworld
import mdp.value_iteration as value_iteration
import img_utils
import tf_utils
from utils import *
class DeepIRLFC:
def __init__(self, n_input, lr, n_h1=400, n_h2=300, l2=10, name='deep_irl_fc'):
self.n_input = n_input
self.lr = lr
self.n_h1 = n_h1
self.n_h2 = n_h2
self.name = name
self.sess = tf.Session()
self.input_s, self.reward, self.theta = self._build_network(self.name)
self.optimizer = tf.train.GradientDescentOptimizer(lr)
self.grad_r = tf.placeholder(tf.float32, [None, 1])
self.l2_loss = tf.add_n([tf.nn.l2_loss(v) for v in self.theta])
self.grad_l2 = tf.gradients(self.l2_loss, self.theta)
self.grad_theta = tf.gradients(self.reward, self.theta, -self.grad_r)
# apply l2 loss gradients
self.grad_theta = [tf.add(l2*self.grad_l2[i], self.grad_theta[i]) for i in range(len(self.grad_l2))]
self.grad_theta, _ = tf.clip_by_global_norm(self.grad_theta, 100.0)
self.grad_norms = tf.global_norm(self.grad_theta)
self.optimize = self.optimizer.apply_gradients(zip(self.grad_theta, self.theta))
self.sess.run(tf.global_variables_initializer())
def _build_network(self, name):
input_s = tf.placeholder(tf.float32, [None, self.n_input])
with tf.variable_scope(name):
fc1 = tf_utils.fc(input_s, self.n_h1, scope="fc1", activation_fn=tf.nn.elu,
initializer=tf.contrib.layers.variance_scaling_initializer(mode="FAN_IN"))
fc2 = tf_utils.fc(fc1, self.n_h2, scope="fc2", activation_fn=tf.nn.elu,
initializer=tf.contrib.layers.variance_scaling_initializer(mode="FAN_IN"))
reward = tf_utils.fc(fc2, 1, scope="reward")
theta = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=name)
return input_s, reward, theta
def get_theta(self):
return self.sess.run(self.theta)
def get_rewards(self, states):
rewards = self.sess.run(self.reward, feed_dict={self.input_s: states})
return rewards
def apply_grads(self, feat_map, grad_r):
grad_r = np.reshape(grad_r, [-1, 1])
feat_map = np.reshape(feat_map, [-1, self.n_input])
_, grad_theta, l2_loss, grad_norms = self.sess.run([self.optimize, self.grad_theta, self.l2_loss, self.grad_norms],
feed_dict={self.grad_r: grad_r, self.input_s: feat_map})
return grad_theta, l2_loss, grad_norms
def compute_state_visition_freq(P_a, gamma, trajs, policy, deterministic=True):
"""compute the expected states visition frequency p(s| theta, T)
using dynamic programming
inputs:
P_a NxNxN_ACTIONS matrix - transition dynamics
gamma float - discount factor
trajs list of list of Steps - collected from expert
policy Nx1 vector (or NxN_ACTIONS if deterministic=False) - policy
returns:
p Nx1 vector - state visitation frequencies
"""
N_STATES, _, N_ACTIONS = np.shape(P_a)
T = len(trajs[0])
# mu[s, t] is the prob of visiting state s at time t
mu = np.zeros([N_STATES, T])
for traj in trajs:
mu[traj[0].cur_state, 0] += 1
mu[:,0] = mu[:,0]/len(trajs)
for s in range(N_STATES):
for t in range(T-1):
if deterministic:
mu[s, t+1] = sum([mu[pre_s, t]*P_a[pre_s, s, int(policy[pre_s])] for pre_s in range(N_STATES)])
else:
mu[s, t+1] = sum([sum([mu[pre_s, t]*P_a[pre_s, s, a1]*policy[pre_s, a1] for a1 in range(N_ACTIONS)]) for pre_s in range(N_STATES)])
p = np.sum(mu, 1)
return p
def demo_svf(trajs, n_states):
"""
compute state visitation frequences from demonstrations
input:
trajs list of list of Steps - collected from expert
returns:
p Nx1 vector - state visitation frequences
"""
p = np.zeros(n_states)
for traj in trajs:
for step in traj:
p[step.cur_state] += 1
p = p/len(trajs)
return p
def deep_maxent_irl(feat_map, P_a, gamma, trajs, lr, n_iters):
"""
Maximum Entropy Inverse Reinforcement Learning (Maxent IRL)
inputs:
feat_map NxD matrix - the features for each state
P_a NxNxN_ACTIONS matrix - P_a[s0, s1, a] is the transition prob of
landing at state s1 when taking action
a at state s0
gamma float - RL discount factor
trajs a list of demonstrations
lr float - learning rate
n_iters int - number of optimization steps
returns
rewards Nx1 vector - recoverred state rewards
"""
# tf.set_random_seed(1)
N_STATES, _, N_ACTIONS = np.shape(P_a)
# init nn model
nn_r = DeepIRLFC(feat_map.shape[1], lr, 3, 3)
# find state visitation frequencies using demonstrations
mu_D = demo_svf(trajs, N_STATES)
# training
for iteration in range(n_iters):
if iteration % (n_iters/10) == 0:
print 'iteration: {}'.format(iteration)
# compute the reward matrix
rewards = nn_r.get_rewards(feat_map)
# compute policy
_, policy = value_iteration.value_iteration(P_a, rewards, gamma, error=0.01, deterministic=True)
# compute expected svf
mu_exp = compute_state_visition_freq(P_a, gamma, trajs, policy, deterministic=True)
# compute gradients on rewards:
grad_r = mu_D - mu_exp
# apply gradients to the neural network
grad_theta, l2_loss, grad_norm = nn_r.apply_grads(feat_map, grad_r)
rewards = nn_r.get_rewards(feat_map)
# return sigmoid(normalize(rewards))
return normalize(rewards)