-
Notifications
You must be signed in to change notification settings - Fork 88
/
Copy pathdemo.py
233 lines (185 loc) · 9.6 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import os
import argparse
import os.path as osp
from glob import glob
from collections import defaultdict
import cv2
import torch
import joblib
import numpy as np
from loguru import logger
from progress.bar import Bar
from configs.config import get_cfg_defaults
from lib.data.datasets import CustomDataset
from lib.utils.imutils import avg_preds
from lib.utils.transforms import matrix_to_axis_angle
from lib.models import build_network, build_body_model
from lib.models.preproc.detector import DetectionModel
from lib.models.preproc.extractor import FeatureExtractor
from lib.models.smplify import TemporalSMPLify
try:
from lib.models.preproc.slam import SLAMModel
_run_global = True
except:
logger.info('DPVO is not properly installed. Only estimate in local coordinates !')
_run_global = False
def run(cfg,
video,
output_pth,
network,
calib=None,
run_global=True,
save_pkl=False,
visualize=False):
cap = cv2.VideoCapture(video)
assert cap.isOpened(), f'Faild to load video file {video}'
fps = cap.get(cv2.CAP_PROP_FPS)
length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
width, height = cap.get(cv2.CAP_PROP_FRAME_WIDTH), cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
# Whether or not estimating motion in global coordinates
run_global = run_global and _run_global
# Preprocess
with torch.no_grad():
if not (osp.exists(osp.join(output_pth, 'tracking_results.pth')) and
osp.exists(osp.join(output_pth, 'slam_results.pth'))):
detector = DetectionModel(cfg.DEVICE.lower())
extractor = FeatureExtractor(cfg.DEVICE.lower(), cfg.FLIP_EVAL)
if run_global: slam = SLAMModel(video, output_pth, width, height, calib)
else: slam = None
bar = Bar('Preprocess: 2D detection and SLAM', fill='#', max=length)
while (cap.isOpened()):
flag, img = cap.read()
if not flag: break
# 2D detection and tracking
detector.track(img, fps, length)
# SLAM
if slam is not None:
slam.track()
bar.next()
tracking_results = detector.process(fps)
if slam is not None:
slam_results = slam.process()
else:
slam_results = np.zeros((length, 7))
slam_results[:, 3] = 1.0 # Unit quaternion
# Extract image features
# TODO: Merge this into the previous while loop with an online bbox smoothing.
tracking_results = extractor.run(video, tracking_results)
logger.info('Complete Data preprocessing!')
# Save the processed data
joblib.dump(tracking_results, osp.join(output_pth, 'tracking_results.pth'))
joblib.dump(slam_results, osp.join(output_pth, 'slam_results.pth'))
logger.info(f'Save processed data at {output_pth}')
# If the processed data already exists, load the processed data
else:
tracking_results = joblib.load(osp.join(output_pth, 'tracking_results.pth'))
slam_results = joblib.load(osp.join(output_pth, 'slam_results.pth'))
logger.info(f'Already processed data exists at {output_pth} ! Load the data .')
# Build dataset
dataset = CustomDataset(cfg, tracking_results, slam_results, width, height, fps)
# run WHAM
results = defaultdict(dict)
n_subjs = len(dataset)
for subj in range(n_subjs):
with torch.no_grad():
if cfg.FLIP_EVAL:
# Forward pass with flipped input
flipped_batch = dataset.load_data(subj, True)
_id, x, inits, features, mask, init_root, cam_angvel, frame_id, kwargs = flipped_batch
flipped_pred = network(x, inits, features, mask=mask, init_root=init_root, cam_angvel=cam_angvel, return_y_up=True, **kwargs)
# Forward pass with normal input
batch = dataset.load_data(subj)
_id, x, inits, features, mask, init_root, cam_angvel, frame_id, kwargs = batch
pred = network(x, inits, features, mask=mask, init_root=init_root, cam_angvel=cam_angvel, return_y_up=True, **kwargs)
# Merge two predictions
flipped_pose, flipped_shape = flipped_pred['pose'].squeeze(0), flipped_pred['betas'].squeeze(0)
pose, shape = pred['pose'].squeeze(0), pred['betas'].squeeze(0)
flipped_pose, pose = flipped_pose.reshape(-1, 24, 6), pose.reshape(-1, 24, 6)
avg_pose, avg_shape = avg_preds(pose, shape, flipped_pose, flipped_shape)
avg_pose = avg_pose.reshape(-1, 144)
avg_contact = (flipped_pred['contact'][..., [2, 3, 0, 1]] + pred['contact']) / 2
# Refine trajectory with merged prediction
network.pred_pose = avg_pose.view_as(network.pred_pose)
network.pred_shape = avg_shape.view_as(network.pred_shape)
network.pred_contact = avg_contact.view_as(network.pred_contact)
output = network.forward_smpl(**kwargs)
pred = network.refine_trajectory(output, cam_angvel, return_y_up=True)
else:
# data
batch = dataset.load_data(subj)
_id, x, inits, features, mask, init_root, cam_angvel, frame_id, kwargs = batch
# inference
pred = network(x, inits, features, mask=mask, init_root=init_root, cam_angvel=cam_angvel, return_y_up=True, **kwargs)
# if False:
if args.run_smplify:
smplify = TemporalSMPLify(smpl, img_w=width, img_h=height, device=cfg.DEVICE)
input_keypoints = dataset.tracking_results[_id]['keypoints']
pred = smplify.fit(pred, input_keypoints, **kwargs)
with torch.no_grad():
network.pred_pose = pred['pose']
network.pred_shape = pred['betas']
network.pred_cam = pred['cam']
output = network.forward_smpl(**kwargs)
pred = network.refine_trajectory(output, cam_angvel, return_y_up=True)
# ========= Store results ========= #
pred_body_pose = matrix_to_axis_angle(pred['poses_body']).cpu().numpy().reshape(-1, 69)
pred_root = matrix_to_axis_angle(pred['poses_root_cam']).cpu().numpy().reshape(-1, 3)
pred_root_world = matrix_to_axis_angle(pred['poses_root_world']).cpu().numpy().reshape(-1, 3)
pred_pose = np.concatenate((pred_root, pred_body_pose), axis=-1)
pred_pose_world = np.concatenate((pred_root_world, pred_body_pose), axis=-1)
pred_trans = (pred['trans_cam'] - network.output.offset).cpu().numpy()
results[_id]['pose'] = pred_pose
results[_id]['trans'] = pred_trans
results[_id]['pose_world'] = pred_pose_world
results[_id]['trans_world'] = pred['trans_world'].cpu().squeeze(0).numpy()
results[_id]['betas'] = pred['betas'].cpu().squeeze(0).numpy()
results[_id]['verts'] = (pred['verts_cam'] + pred['trans_cam'].unsqueeze(1)).cpu().numpy()
results[_id]['frame_ids'] = frame_id
if save_pkl:
joblib.dump(results, osp.join(output_pth, "wham_output.pkl"))
# Visualize
if visualize:
from lib.vis.run_vis import run_vis_on_demo
with torch.no_grad():
run_vis_on_demo(cfg, video, results, output_pth, network.smpl, vis_global=run_global)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--video', type=str,
default='examples/demo_video.mp4',
help='input video path or youtube link')
parser.add_argument('--output_pth', type=str, default='output/demo',
help='output folder to write results')
parser.add_argument('--calib', type=str, default=None,
help='Camera calibration file path')
parser.add_argument('--estimate_local_only', action='store_true',
help='Only estimate motion in camera coordinate if True')
parser.add_argument('--visualize', action='store_true',
help='Visualize the output mesh if True')
parser.add_argument('--save_pkl', action='store_true',
help='Save output as pkl file')
parser.add_argument('--run_smplify', action='store_true',
help='Run Temporal SMPLify for post processing')
args = parser.parse_args()
cfg = get_cfg_defaults()
cfg.merge_from_file('configs/yamls/demo.yaml')
logger.info(f'GPU name -> {torch.cuda.get_device_name()}')
logger.info(f'GPU feat -> {torch.cuda.get_device_properties("cuda")}')
# ========= Load WHAM ========= #
smpl_batch_size = cfg.TRAIN.BATCH_SIZE * cfg.DATASET.SEQLEN
smpl = build_body_model(cfg.DEVICE, smpl_batch_size)
network = build_network(cfg, smpl)
network.eval()
# Output folder
sequence = '.'.join(args.video.split('/')[-1].split('.')[:-1])
output_pth = osp.join(args.output_pth, sequence)
os.makedirs(output_pth, exist_ok=True)
run(cfg,
args.video,
output_pth,
network,
args.calib,
run_global=not args.estimate_local_only,
save_pkl=args.save_pkl,
visualize=args.visualize)
print()
logger.info('Done !')