-
Notifications
You must be signed in to change notification settings - Fork 6
/
vae_lstm-lstm.py
344 lines (333 loc) · 17.6 KB
/
vae_lstm-lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
from __future__ import print_function, division, absolute_import
import tensorflow as tf
import numpy as np
import zhusuan as zs
from zhusuan import reuse
import utils.data as data_
import utils.model as model
from utils.ptb import reader
from utils import parameters
from utils.beam_search import beam_search
from tensorflow.python import debug as tf_debug
from tensorflow.python.util.nest import flatten
# PTB input from tf tutorial
class PTBInput(object):
"""The input data."""
def __init__(self, config, data, name=None):
self.batch_size = batch_size = config.batch_size
self.num_steps = num_steps = config.num_steps
self.epoch_size = ((len(data) // batch_size) - 1) // num_steps
self.input_data, self.targets = reader.ptb_producer(
data, batch_size, num_steps, name=name)
def rnn_placeholders(state):
"""Convert RNN state tensors to placeholders with the zero state as default."""
if isinstance(state, tf.contrib.rnn.LSTMStateTuple):
c, h = state
c = tf.placeholder_with_default(c, c.shape, c.op.name)
h = tf.placeholder_with_default(h, h.shape, h.op.name)
return tf.contrib.rnn.LSTMStateTuple(c, h)
elif isinstance(state, tf.Tensor):
h = state
h = tf.placeholder_with_default(h, h.shape, h.op.name)
return h
else:
structure = [rnn_placeholders(x) for x in state]
return tuple(structure)
def online_inference(sess, data_dict, sample, seq, in_state=None,
out_state=None, seed='<BOS>', length=None):
"""Generate sequence one word at a time, based on the previous word."""
sentence = [seed]
state = None
for _ in range(params.gen_length):
# generate until <EOS> tag
if "<EOS>" in sentence:
break
input_sent_vect = [data_dict.word2idx[word] for word in sentence]
feed = {seq: np.array(input_sent_vect).reshape([1, len(input_sent_vect)]),
length: [len(input_sent_vect)]}
# for the first decoder step, the state is None
if state is not None:
feed.update({in_state: state})
index, state = sess.run([sample, out_state], feed)
sentence += [data_dict.idx2word[int(index)]]
sentence = ' '.join([word for word in sentence if word not in ['<BOS>',
'<EOS>']])
print(sentence)
def q_net(encoder_input, seq_len, batch_size):
with zs.BayesianNet() as encoder:
# construct lstm
# cell = tf.nn.rnn_cell.BasicLSTMCell(params.cell_hidden_size)
# cells = tf.nn.rnn_cell.MultiRNNCell([cell]*params.rnn_layers)
if params.base_cell == 'lstm':
base_cell = tf.contrib.rnn.LSTMCell
else:
base_cell = tf.contrib.rnn.GRUCell
cell = model.make_rnn_cell([params.decoder_hidden for _ in range(
params.decoder_rnn_layers)], base_cell=base_cell)
initial = cell.zero_state(batch_size, dtype=tf.float32)
if params.keep_rate < 1:
encoder_input = tf.nn.dropout(encoder_input, params.keep_rate)
outputs, final_state = tf.nn.dynamic_rnn(cell,
inputs=encoder_input,
sequence_length=seq_len,
initial_state=initial,
swap_memory=True,
dtype=tf.float32)
final_state = tf.concat(final_state[0], 1)
if params.encode == 'hw':
# Higway network [S.Sementiuta et.al]
for i in range(params.highway_lc):
with tf.variable_scope("hw_layer_enc{0}".format(i)) as scope:
if i == 0: # first, input layer
prev_y = tf.layers.dense(final_state, params.highway_ls)
elif i == params.highway_lc - 1: # last, output layer
final_state = tf.layers.dense(prev_y,
params.latent_size * 2)
else: # hidden layers
prev_y = model.highway_network(prev_y,
params.highway_ls)
lz_mean, lz_logstd = tf.split(final_state, 2, axis=1)
elif params.encode == 'mlp':
lz_mean = tf.layers.dense(inputs=final_state,
units=params.latent_size)
lz_logstd = tf.layers.dense(inputs=final_state,
units=params.latent_size)
# define latent variable`s Stochastic Tensor
z = zs.Normal('z', lz_mean, lz_logstd, group_event_ndims=1)
tf.summary.histogram('latent_space', z)
return z
@reuse('decoder')
def vae_lstm(observed, batch_size, d_seq_l, embed, d_inputs, vocab_size, gen_mode=False):
with zs.BayesianNet(observed=observed) as decoder:
# prepare input
z_mean = tf.zeros([batch_size, params.latent_size])
z = zs.Normal('z', mean=z_mean, std=0.1, group_event_ndims=0)
tf.summary.histogram('z|x', z)
# z = [bath_size, l_s] -> [batch_size, seq_len, l_s]
with tf.device("/cpu:0"):
dec_inps = tf.nn.embedding_lookup(embed, d_inputs)
# turn off dropout for generation:
if params.dec_keep_rate < 1 and not gen_mode:
dec_inps = tf.nn.dropout(dec_inps, params.dec_keep_rate)
max_sl = tf.shape(dec_inps)[1]
# define cell
if params.base_cell == 'lstm':
base_cell = tf.contrib.rnn.LSTMCell
else:
# not working for now
base_cell = tf.contrib.rnn.GRUCell
cell = model.make_rnn_cell([
params.decoder_hidden for _ in range(
params.decoder_rnn_layers)], base_cell=base_cell)
if params.decode == 'hw':
# Higway network [S.Sementiuta et.al]
for i in range(params.highway_lc):
with tf.variable_scope("hw_layer_dec{0}".format(i)) as scope:
if i == 0: # first, input layer
prev_y = tf.layers.dense(z,
params.decoder_hidden * 2)
elif i == params.highway_lc - 1: # last, output layer
z_dec = tf.layers.dense(prev_y,
params.decoder_hidden * 2)
else: # hidden layers
prev_y = model.highway_network(prev_y,
params.highway_ls)
inp_h, inp_c = tf.split(z_dec, 2, axis=1)
initial_state = rnn_placeholders(
(tf.contrib.rnn.LSTMStateTuple(inp_c, inp_h), ))
elif params.decode == 'concat':
z_out = tf.reshape(
tf.tile(tf.expand_dims(z, 1), (1, max_sl, 1)),
[batch_size, -1, params.latent_size])
dec_inps = tf.concat([dec_inps, z_out], 2)
initial_state = rnn_placeholders(
cell.zero_state(tf.shape(dec_inps)[0], tf.float32))
elif params.decode == 'mlp':
# z->decoder initial state
w1 = tf.get_variable('whl', [params.latent_size, params.highway_ls],
tf.float32,
initializer=tf.truncated_normal_initializer())
b1 = tf.get_variable('bhl', [params.highway_ls], tf.float32,
initializer=tf.ones_initializer())
z_dec = tf.matmul(z, w1) + b1
inp_h, inp_c = tf.split(tf.layers.dense(z_dec,
params.decoder_hidden * 2),
2, axis=1)
initial_state = rnn_placeholders(
(tf.contrib.rnn.LSTMStateTuple(inp_c, inp_h), ))
outputs, final_state = tf.nn.dynamic_rnn(cell, inputs=dec_inps,
sequence_length=d_seq_l,
initial_state=initial_state,
swap_memory=True,
dtype=tf.float32)
# define decoder network
if gen_mode:
# only interested in the last output
outputs = outputs[:, -1, :]
outputs_r = tf.reshape(outputs, [-1, params.decoder_hidden])
x_logits = tf.layers.dense(outputs_r, units=vocab_size, activation=None)
if params.beam_search:
sample = tf.nn.softmax(x_logits)
else:
sample = tf.multinomial(x_logits / params.temperature, 1)[0][0]
return x_logits, (initial_state, final_state), sample
def main(params):
if params.input == 'GOT':
corpus_path = "/home/luoyy/datasets_small/got"
data_raw = data_.got_read(corpus_path)
data, labels_arr, embed_arr, data_dict = data_.prepare_data(data_raw,
params)
elif params.input == 'PTB':
# data in form [data, labels]
train_data_raw, valid_data_raw, test_data_raw = data_.ptb_read(
'./PTB_DATA/data')
data, labels_arr, embed_arr, data_dict = data_.prepare_data(
train_data_raw, params)
with tf.Graph().as_default() as graph:
inputs = tf.placeholder(shape=[None, None], dtype=tf.int32)
d_inputs_ps = tf.placeholder(dtype=tf.int32, shape=[None, None])
labels = tf.placeholder(shape=[None, None], dtype=tf.int32)
with tf.device("/cpu:0"):
if not params.pre_trained_embed:
embedding = tf.get_variable(
"embedding", [data_dict.vocab_size,
params.embed_size], dtype=tf.float32)
vect_inputs = tf.nn.embedding_lookup(embedding, inputs)
else:
# [data_dict.vocab_size, params.embed_size]
embedding = tf.Variable(
embed_arr,
trainable=params.fine_tune_embed,
name="embedding", dtype=tf.float32)
vect_inputs = tf.nn.embedding_lookup(embedding, inputs)
# inputs = tf.unstack(inputs, num=num_steps, axis=1)
vocab_size = data_dict.vocab_size
seq_length = tf.placeholder_with_default([0.0], shape=[None])
d_seq_length = tf.placeholder(shape=[None], dtype=tf.float32)
qz = q_net(vect_inputs, seq_length, params.batch_size)
x_logits, _, _ = vae_lstm({'z': qz}, params.batch_size,
d_seq_length, embedding,
d_inputs_ps, vocab_size=vocab_size)
# loss, masking <PAD>
current_len = tf.placeholder_with_default(params.sent_max_size,
shape=())
# tf.sequence_mask, tf.contrib.seq2seq.sequence_loss
labels_flat = tf.reshape(labels, [-1])
cross_entr = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=x_logits, labels=labels_flat)
mask_labels = tf.sign(tf.to_float(labels_flat))
masked_losses = mask_labels * cross_entr
# reshape again
masked_losses = tf.reshape(masked_losses, tf.shape(labels))
mean_loss_by_example = tf.reduce_sum(masked_losses,
reduction_indices=1) / d_seq_length
rec_loss = tf.reduce_mean(mean_loss_by_example)
perplexity = tf.exp(rec_loss)
# kl divergence calculation
kld = -0.5 * tf.reduce_mean(
tf.reduce_sum(
1 + tf.log(tf.square(qz.distribution.std) + 0.0001)
- tf.square(qz.distribution.mean)
- tf.square(qz.distribution.std), 1))
tf.summary.scalar('kl_divergence', kld)
# kld weight annealing
anneal = tf.placeholder(tf.int32)
annealing = (tf.tanh((tf.to_float(anneal) - 3500)/1000) + 1)/2
# overall loss reconstruction loss - kl_regularization
lower_bound = rec_loss + tf.multiply(
tf.to_float(annealing), tf.to_float(kld)) / 10
#lower_bound = rec_loss
sm2 = [tf.summary.scalar('lower_bound', lower_bound),
tf.summary.scalar('kld_coeff', annealing)]
gradients = tf.gradients(lower_bound, tf.trainable_variables())
opt = tf.train.AdamOptimizer(learning_rate=params.learning_rate)
clipped_grad, _ = tf.clip_by_global_norm(gradients, 5)
optimize = opt.apply_gradients(zip(clipped_grad,
tf.trainable_variables()))
#sample
logits, states, smpl = vae_lstm({}, 1, d_seq_length, embedding,
d_inputs_ps, vocab_size=vocab_size,
gen_mode=True)
init_state = states[0]
fin_output = states[1]
# merge summaries
merged = tf.summary.merge_all()
with tf.Session() as sess:
sess.run([tf.global_variables_initializer(),
tf.local_variables_initializer()])
if params.debug:
sess = tf_debug.LocalCLIDebugWrapperSession(sess)
summary_writer = tf.summary.FileWriter(params.LOG_DIR, sess.graph)
summary_writer.add_graph(sess.graph)
#ptb_data = PTBInput(params.batch_size, train_data)
num_iters = len(data) // params.batch_size
cur_it = 0
iters, kld_arr, coeff = [], [], []
for e in range(params.num_epochs):
for it in range(num_iters):
params.is_training = True
batch = data[it * params.batch_size: (it + 1) * params.batch_size]
l_batch = labels_arr[it * params.batch_size:(it + 1) * params.batch_size]
# zero padding
pad = len(max(batch, key=len))
# not optimal!!
length_ = np.array([len(sent) for sent in batch]).reshape(params.batch_size)
# prepare encoder and decoder inputs to feed
batch = np.array([sent + [0] * (pad - len(sent)) for sent in batch])
l_batch = np.array([(sent + [0] * (pad - len(sent))) for sent in l_batch])
# encoder feed=[....<EOS>], decoder feed=[<BOS>....], labels=[.....<EOS>]
feed = {inputs: l_batch, d_inputs_ps: batch, labels: l_batch,
seq_length: length_, d_seq_length: length_, anneal: cur_it, current_len: pad}
lb, _, kld_, ann_, r_loss, perplexity_ = sess.run([lower_bound, optimize,
kld, annealing, rec_loss, perplexity],
feed_dict=feed)
cur_it += 1
iters.append(cur_it)
kld_arr.append(kld_)
coeff.append(ann_)
if cur_it % 100 == 0 and cur_it != 0:
print("VLB after {} ({}) iterations (epoch): {} KLD: "
"{} Annealing Coeff: {} CE: {}".format(
cur_it, e,lb, kld_, ann_, r_loss))
print("Perplexity: {}".format(perplexity_))
if cur_it % 150 == 0:
if not params.beam_search:
params.is_training = False
online_inference(sess, data_dict,
sample=smpl, seq=d_inputs_ps,
in_state=init_state,
out_state=fin_output,
length=d_seq_length)
else:
gen_sentence = beam_search(sess, data_dict, states,
smpl, (d_inputs_ps,
d_seq_length), params,
beam_size=params.beam_size)
print(gen_sentence)
if cur_it % 400 == 0 and cur_it!=0:
# saver = tf.train.Saver()
summary = sess.run(merged, feed_dict=feed)
summary_writer.add_summary(summary)
# saver.save(sess, os.path.join(params.LOG_DIR, "lstmlstm_model.ckpt"), cur_it)
if params.visualise:
if cur_it % 30000 == 0 and cur_it!=0:
import matplotlib.pyplot as plt
with open("./run_kld" + str(params.dec_keep_rate), 'w') as wf:
_ = [wf.write(str(s) + ' ')for s in iters]
wf.write('\n')
_ = [wf.write(str(s) + ' ')for s in kld_arr]
wf.write('\n')
_ = [wf.write(str(s) + ' ') for s in coeff]
plt.plot(iters, kld_arr, label='KLD')
plt.xlabel('Iterations')
plt.legend(bbox_to_anchor=(1.05, 1),
loc=1, borderaxespad=0.)
plt.show()
plt.plot(iters, coeff, 'r--', label='annealing')
plt.legend(bbox_to_anchor=(1.05, 1),
loc=1, borderaxespad=0.)
plt.show()
if __name__=="__main__":
params = parameters.Parameters()
params.parse_args()
main(params)