forked from fieldtrip/fieldtrip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathft_componentanalysis.m
957 lines (839 loc) · 33.5 KB
/
ft_componentanalysis.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
function [comp] = ft_componentanalysis(cfg, data)
% FT_COMPONENTANALYSIS performs independent component analysis or other
% spatio-temporal decompositions of EEG or MEG data. This function computes
% the topography and timecourses of the components. The output of this
% function can be further analyzed with FT_TIMELOCKANALYSIS or
% FT_FREQANALYSIS.
%
% Use as
% [comp] = ft_componentanalysis(cfg, data)
% where cfg is a configuration structure and the input data is obtained from
% FT_PREPROCESSING or from FT_TIMELOCKANALYSIS.
%
% The configuration should contain
% cfg.method = 'runica', 'fastica', 'binica', 'pca', 'svd', 'jader',
% 'varimax', 'dss', 'cca', 'sobi', 'white' or 'csp'
% (default = 'runica')
% cfg.channel = cell-array with channel selection (default = 'all'),
% see FT_CHANNELSELECTION for details
% cfg.split = cell-array of channel types between which covariance
% is split, it can also be 'all' or 'no' (default = 'no')
% cfg.trials = 'all' or a selection given as a 1xN vector (default = 'all')
% cfg.numcomponent = 'all' or number (default = 'all')
% cfg.demean = 'no' or 'yes', whether to demean the input data (default = 'yes')
% cfg.updatesens = 'no' or 'yes' (default = 'yes')
% cfg.feedback = 'no', 'text', 'textbar', 'gui' (default = 'text')
%
% The runica method supports the following method-specific options. The
% values that these options can take can be found with HELP RUNICA.
% cfg.runica.extended
% cfg.runica.pca
% cfg.runica.sphering
% cfg.runica.weights
% cfg.runica.lrate
% cfg.runica.block
% cfg.runica.anneal
% cfg.runica.annealdeg
% cfg.runica.stop
% cfg.runica.maxsteps
% cfg.runica.bias
% cfg.runica.momentum
% cfg.runica.specgram
% cfg.runica.posact
% cfg.runica.verbose
% cfg.runica.logfile
% cfg.runica.interput
%
% The fastica method supports the following method-specific options. The
% values that these options can take can be found with HELP FASTICA.
% cfg.fastica.approach
% cfg.fastica.numOfIC
% cfg.fastica.g
% cfg.fastica.finetune
% cfg.fastica.a1
% cfg.fastica.a2
% cfg.fastica.mu
% cfg.fastica.stabilization
% cfg.fastica.epsilon
% cfg.fastica.maxNumIterations
% cfg.fastica.maxFinetune
% cfg.fastica.sampleSize
% cfg.fastica.initGuess
% cfg.fastica.verbose
% cfg.fastica.displayMode
% cfg.fastica.displayInterval
% cfg.fastica.firstEig
% cfg.fastica.lastEig
% cfg.fastica.interactivePCA
% cfg.fastica.pcaE
% cfg.fastica.pcaD
% cfg.fastica.whiteSig
% cfg.fastica.whiteMat
% cfg.fastica.dewhiteMat
% cfg.fastica.only
%
% The binica method supports the following method-specific options. The
% values that these options can take can be found with HELP BINICA.
% cfg.binica.extended
% cfg.binica.pca
% cfg.binica.sphering
% cfg.binica.lrate
% cfg.binica.blocksize
% cfg.binica.maxsteps
% cfg.binica.stop
% cfg.binica.weightsin
% cfg.binica.verbose
% cfg.binica.filenum
% cfg.binica.posact
% cfg.binica.annealstep
% cfg.binica.annealdeg
% cfg.binica.bias
% cfg.binica.momentum
%
% The dss method requires the following method-specific option and supports
% a whole lot of other options. The values that these options can take can
% be found with HELP DSS_CREATE_STATE.
% cfg.dss.denf.function
% cfg.dss.denf.params
%
% The sobi method supports the following method-specific options. The
% values that these options can take can be found with HELP SOBI.
% cfg.sobi.n_sources
% cfg.sobi.p_correlations
%
% The csp method implements the common-spatial patterns method. For CSP, the
% following specific options can be defined:
% cfg.csp.classlabels = vector that assigns a trial to class 1 or 2.
% cfg.csp.numfilters = the number of spatial filters to use (default: 6).
%
% The icasso method implements icasso. It runs fastica a specified number of
% times, and provides information about the stability of the components found
% The following specific options can be defined, see ICASSOEST:
% cfg.icasso.mode
% cfg.icasso.Niter
%
% Instead of specifying a component analysis method, you can also specify
% a previously computed unmixing matrix, which will be used to estimate the
% component timecourses in this data. This requires
% cfg.unmixing = NxN unmixing matrix
% cfg.topolabel = Nx1 cell-array with the channel labels
%
% You may specify a particular seed for random numbers called by
% rand/randn/randi, or the random state used by a previous call to this
% function to replicate results. For example:
% cfg.randomseed = integer seed value of user's choice
% cfg.randomseed = comp.cfg.callinfo.randomseed (from previous call)
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% cfg.outputfile = ...
% If you specify one of these (or both) the input data will be read from a *.mat
% file on disk and/or the output data will be written to a *.mat file. These mat
% files should contain only a single variable, corresponding with the
% input/output structure.
%
% See also FT_TOPOPLOTIC, FT_REJECTCOMPONENT, FASTICA, RUNICA, BINICA, SVD,
% JADER, VARIMAX, DSS, CCA, SOBI, ICASSO
% Copyright (C) 2003-2012, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% undocumented cfg options:
% cfg.cellmode = string, 'no' or 'yes', allows to run in cell-mode, i.e.
% no concatenation across trials is needed. This is based on experimental
% code and only supported for 'dss', 'fastica' and 'bsscca' as methods.
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar data
ft_preamble provenance data
ft_preamble trackconfig
ft_preamble randomseed
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% check if the input data is valid for this function
istimelock = ft_datatype(data, 'timelock');
data = ft_checkdata(data, 'datatype', 'raw', 'feedback', 'yes');
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'forbidden', {'channels', 'trial'}); % prevent accidental typos, see issue 1729
cfg = ft_checkconfig(cfg, 'forbidden', {'detrend'});
cfg = ft_checkconfig(cfg, 'renamed', {'blc', 'demean'});
cfg = ft_checkconfig(cfg, 'renamedval', {'method', 'predetermined mixing matrix', 'predetermined unmixing matrix'});
cfg = ft_checkconfig(cfg, 'deprecated', {'topo'});
% set the defaults
cfg.method = ft_getopt(cfg, 'method', 'runica');
cfg.demean = ft_getopt(cfg, 'demean', 'yes');
cfg.trials = ft_getopt(cfg, 'trials', 'all', 1);
cfg.channel = ft_getopt(cfg, 'channel', 'all');
cfg.split = ft_getopt(cfg, 'split', 'no');
cfg.numcomponent = ft_getopt(cfg, 'numcomponent', 'all');
cfg.normalisesphere = ft_getopt(cfg, 'normalisesphere', 'yes');
cfg.cellmode = ft_getopt(cfg, 'cellmode', 'no');
cfg.doscale = ft_getopt(cfg, 'doscale', 'yes');
cfg.updatesens = ft_getopt(cfg, 'updatesens', 'yes');
cfg.feedback = ft_getopt(cfg, 'feedback', 'text');
% select channels, has to be done prior to handling of previous (un)mixing matrix
cfg.channel = ft_channelselection(cfg.channel, data.label);
if istrue(cfg.cellmode)
ft_hastoolbox('cellfunction', 1);
end
if isfield(cfg, 'topo') && isfield(cfg, 'topolabel')
ft_warning(['Specifying cfg.topo (= mixing matrix) to determine component '...
'timecourses in specified data is deprecated; please specify an '...
'unmixing matrix instead with cfg.unmixing. '...
'Using cfg.unmixing=pinv(cfg.topo) for now to reproduce old behavior.']);
cfg.unmixing = pinv(cfg.topo);
cfg = rmfield(cfg, 'topo');
end
if isfield(cfg, 'unmixing') && isfield(cfg, 'topolabel')
% use the previously determined unmixing matrix on this dataset
% test whether all required channels are present in the data
[datsel, toposel] = match_str(cfg.channel, cfg.topolabel);
if length(toposel)~=length(cfg.topolabel)
ft_error('not all channels that are required for the unmixing are present in the data');
end
% ensure that all data channels not used in the unmixing should be removed from the channel selection
tmpchan = match_str(cfg.channel, cfg.topolabel);
cfg.channel = cfg.channel(tmpchan);
% update some settings where there is no further choice to be made by the user
cfg.numcomponent = 'all';
cfg.method = 'predetermined unmixing matrix';
end
% add the options for the specified methods to the configuration, only if needed
switch cfg.method
case 'icasso'
cfg.icasso = ft_getopt(cfg, 'icasso', []);
cfg.icasso.mode = ft_getopt(cfg.icasso, 'mode', 'both');
cfg.icasso.Niter = ft_getopt(cfg.icasso, 'Niter', 15);
cfg.icasso.method = ft_getopt(cfg.icasso, 'method', 'fastica');
cfg.fastica = ft_getopt(cfg, 'fastica', []);
case 'fastica'
% additional options, see FASTICA for details
cfg.fastica = ft_getopt(cfg, 'fastica', []);
case 'runica'
% additional options, see RUNICA for details
cfg.runica = ft_getopt(cfg, 'runica', []);
cfg.runica.lrate = ft_getopt(cfg.runica, 'lrate', 0.001);
case 'binica'
% additional options, see BINICA for details
cfg.binica = ft_getopt(cfg, 'binica', []);
cfg.binica.lrate = ft_getopt(cfg.binica, 'lrate', 0.001);
case 'dss'
% additional options, see DSS for details
cfg.dss = ft_getopt(cfg, 'dss', []);
cfg.dss.denf = ft_getopt(cfg.dss, 'denf', []);
cfg.dss.denf.function = ft_getopt(cfg.dss.denf, 'function', 'denoise_fica_tanh');
cfg.dss.denf.params = ft_getopt(cfg.dss.denf, 'params', []);
cfg.dss.preprocf = ft_getopt(cfg.dss, 'preprocf', []);
cfg.dss.preprocf.function = ft_getopt(cfg.dss.preprocf, 'function', 'pre_sphere');
cfg.dss.preprocf.params = ft_getopt(cfg.dss.preprocf, 'params', []);
case 'csp'
% additional options, see CSP for details
cfg.csp = ft_getopt(cfg, 'csp', []);
cfg.csp.numfilters = ft_getopt(cfg.csp, 'numfilters', 6);
cfg.csp.classlabels = ft_getopt(cfg.csp, 'classlabels');
case 'bsscca'
% additional options, see BSSCCA for details
cfg.bsscca = ft_getopt(cfg, 'bsscca', []);
cfg.bsscca.refdelay = ft_getopt(cfg.bsscca, 'refdelay', 1);
cfg.bsscca.chandelay = ft_getopt(cfg.bsscca, 'chandelay', 0);
if strcmp(cfg.cellmode, 'no')
ft_error('cfg.mehod = ''bsscca'' requires cfg.cellmode = ''yes''');
end
otherwise
% do nothing
end
% select trials of interest
tmpcfg = keepfields(cfg, {'trials', 'channel', 'tolerance', 'showcallinfo'});
data = ft_selectdata(tmpcfg, data);
% restore the provenance information
[cfg, data] = rollback_provenance(cfg, data);
% deal with different chantypes if requested
if isequal(cfg.split, 'no')
chantype = {};
elseif isequal(cfg.split, 'all')
chantype = unique(ft_chantype(data.label));
else
chantype = cfg.split;
end
if numel(chantype)>0
% recurse per specified chantype
tmpdata = cell(1, numel(chantype));
for k = 1:numel(chantype)
tmpcfg = cfg;
tmpcfg.channel = data.label(ft_chantype(data.label, lower(chantype{k})));
tmpcfg.split = 'no';
tmpcfg.chantype = lower(chantype{k}); % makes the output labels unique, to allow appending later on
tmpdata{1,k} = ft_componentanalysis(tmpcfg, data);
end
comp = ft_appenddata([], tmpdata{:});
return;
else
%
end
Ntrials = length(data.trial);
Nchans = length(data.label);
if Nchans==0
ft_error('no channels were selected');
end
% default is to compute just as many components as there are channels in the data
if strcmp(cfg.numcomponent, 'all')
defaultNumCompsUsed = true(1);
cfg.numcomponent = length(data.label);
else
defaultNumCompsUsed = false(1);
end
% determine the size of each trial, they can be variable length
Nsamples = zeros(1,Ntrials);
for trial=1:Ntrials
Nsamples(trial) = size(data.trial{trial},2);
end
if strcmp(cfg.demean, 'yes')
% optionally perform baseline correction on each trial
ft_info('baseline correcting data \n');
for trial=1:Ntrials
data.trial{trial} = ft_preproc_baselinecorrect(data.trial{trial});
end
end
if strcmp(cfg.doscale, 'yes')
% determine the scaling of the data, scale it to approximately unity
% this will improve the performance of some methods, esp. fastica
tmp = data.trial{1};
tmp(~isfinite(tmp)) = 0; % ensure that the scaling is a finite value
scale = norm((tmp*tmp')./size(tmp,2)); clear tmp;
scale = sqrt(scale);
if scale ~= 0
ft_info('scaling data with 1 over %f\n', scale);
for trial=1:Ntrials
data.trial{trial} = data.trial{trial} ./ scale;
end
else
ft_info('no scaling applied, since factor is 0\n');
end
else
ft_info('no scaling applied to the data\n');
end
if strcmp(cfg.method, 'sobi')
% concatenate all the data into a 3D matrix respectively 2D (sobi)
ft_info('concatenating data');
Nsamples = Nsamples(1);
dat = zeros(Ntrials, Nchans, Nsamples);
% all trials should have an equal number of samples
% and it is assumed that the time axes of all trials are aligned
for trial=1:Ntrials
ft_info('.');
dat(trial,:,:) = data.trial{trial};
end
ft_info('\n');
ft_info('concatenated data matrix size %dx%dx%d\n', size(dat,1), size(dat,2), size(dat,3));
if Ntrials == 1
dummy = 0;
[dat, dummy] = shiftdim(dat);
else
dat = shiftdim(dat,1);
end
elseif strcmp(cfg.method, 'csp')
% concatenate the trials into two data matrices, one for each class
sel1 = find(cfg.csp.classlabels==1);
sel2 = find(cfg.csp.classlabels==2);
if min(length(sel1), length(sel2)) == 0
ft_error('CSP requires class labels!');
end
if length(sel1)+length(sel2)~=length(cfg.csp.classlabels)
ft_warning('not all trials belong to class 1 or 2');
end
dat1 = cat(2, data.trial{sel1});
dat2 = cat(2, data.trial{sel2});
ft_info('concatenated data matrix size for class 1 is %dx%d\n', size(dat1,1), size(dat1,2));
ft_info('concatenated data matrix size for class 2 is %dx%d\n', size(dat2,1), size(dat2,2));
elseif ~strcmp(cfg.method, 'predetermined unmixing matrix') && strcmp(cfg.cellmode, 'no')
% concatenate all the data into a 2D matrix unless we already have an
% unmixing matrix or unless the user request it otherwise
ft_info('concatenating data');
dat = zeros(Nchans, sum(Nsamples));
ft_progress('init', cfg.feedback, 'concatenating trials...');
for trial=1:Ntrials
ft_progress(trial/Ntrials, 'Concatenating trial %d from %d', trial, Ntrials);
begsample = sum(Nsamples(1:(trial-1))) + 1;
endsample = sum(Nsamples(1:trial));
dat(:,begsample:endsample) = data.trial{trial};
end
ft_progress('close')
ft_info('concatenated data matrix size %dx%d\n', size(dat,1), size(dat,2));
hasdatanans = any(~isfinite(dat(:)));
if hasdatanans
ft_info('data contains nan or inf, only using the samples without nan or inf\n');
finitevals = sum(~isfinite(dat))==0;
if ~any(finitevals)
ft_error('no samples remaining');
else
dat = dat(:,finitevals);
end
end
else
ft_info('not concatenating data\n');
dat = data.trial;
% FIXME cellmode processing is not nan-transparent yet
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% perform the component analysis
ft_info('starting decomposition using %s\n', cfg.method);
switch cfg.method
case 'icasso'
% check whether the required low-level toolboxes are installed
ft_hastoolbox('icasso', 1);
if strcmp(cfg.icasso.method, 'fastica')
ft_hastoolbox('fastica', 1);
cfg.fastica.numOfIC = cfg.numcomponent;
optarg = ft_cfg2keyval(cfg.(cfg.icasso.method));
sR = icassoEst(cfg.icasso.mode, dat, cfg.icasso.Niter, optarg{:});
elseif strcmp(cfg.icasso.method, 'dss')
% recurse into ft_componentanalysis and do some post processing
tmpcfg = rmfield(cfg, 'icasso');
tmpcfg.method = cfg.icasso.method;
tmpdata = data;
% initialize the variables to hold the output
sR.W = cell(cfg.icasso.Niter, 1);
sR.A = cell(cfg.icasso.Niter, 1);
sR.index = zeros(0,2);
for k = 1:cfg.icasso.Niter
tmp = ft_componentanalysis(tmpcfg, tmpdata);
sR.W{k} = tmp.unmixing;
sR.A{k} = tmp.topo;
sR.index = cat(1, sR.index, [k*ones(size(tmp.topo,2),1) (1:size(tmp.topo,2))']);
sR.whiteningMatrix = tmp.cfg.dss.V;
sR.dewhiteningMatrix = tmp.cfg.dss.dV;
end
sR.signal = dat;
sR.mode = cfg.icasso.mode;
sR.rdim = size(tmp.topo,2);
else
ft_error('only ''fastica'' or ''dss'' is supported as method for icasso');
end
% do the rest of the icasso related processing
sR = icassoCluster(sR, 'strategy', 'AL', 'simfcn', 'abscorr', 's2d', 'sim2dis', 'L',cfg.numcomponent);
sR = icassoProjection(sR, 'cca', 's2d', 'sqrtsim2dis', 'epochs', 75);
[Iq, mixing, unmixing, dum, index2centrotypes] = icassoResult(sR,cfg.numcomponent);
% this step is done, because in icassoResult mixing is determined to be
% pinv(unmixing), which yields strange results. Better take it from the
% individual iterations. NOTE: as a consequence unmixing*mixing is not
% necessarily identity anymore !!!
for k = 1:size(mixing,2)
ix = sR.index(index2centrotypes(k),:);
mixing(:,k) = sR.A{ix(1)}(:,ix(2));
end
%[Iq, mixing, unmixing, dat] = icassoShow(sR, 'estimate', 'off', 'L', cfg.numcomponent);
% sort the output according to Iq
[srt, ix] = sort(-Iq); % account for NaNs
mixing = mixing(:, ix);
unmixing = unmixing(ix, :);
cfg.icasso.Iq = Iq(ix);
cfg.icasso.sR = rmfield(sR, 'signal'); % keep the rest of the information
case 'fastica'
% check whether the required low-level toolboxes are installed
ft_hastoolbox('fastica', 1); % see http://www.cis.hut.fi/projects/ica/fastica
if ~defaultNumCompsUsed &&...
(~isfield(cfg, 'fastica') || ~isfield(cfg.fastica, 'numOfIC'))
% user has specified cfg.numcomponent and not specified
% cfg.fastica.numOfIC, so copy cfg.numcomponent over
cfg.fastica.numOfIC = cfg.numcomponent;
elseif ~defaultNumCompsUsed &&...
isfield(cfg, 'fastica') && isfield(cfg.fastica, 'numOfIC')
% user specified both cfg.numcomponent and cfg.fastica.numOfIC,
% unsure which one to use
ft_error('you can specify either cfg.fastica.numOfIC or cfg.numcomponent (they will have the same effect), but not both');
end
try
% construct key-value pairs for the optional arguments
optarg = ft_cfg2keyval(cfg.fastica);
[mixing, unmixing] = fastica(dat, optarg{:});
catch
% the "catch me" syntax is broken on MATLAB74, this fixes it
me = lasterror;
% give a hopefully instructive error message
ft_info(['If you get an out-of-memory in fastica here, and you use fastica 2.5, change fastica.m, line 482: \n' ...
'from\n' ...
' if ~isempty(W) %% ORIGINAL VERSION\n' ...
'to\n' ...
' if ~isempty(W) && nargout ~= 2 %% if nargout == 2, we return [A, W], and NOT ICASIG\n']);
% forward original error
rethrow(me);
end
case 'runica'
% check whether the required low-level toolboxes are installed
% see http://www.sccn.ucsd.edu/eeglab
ft_hastoolbox('eeglab', 1);
if ~defaultNumCompsUsed &&...
(~isfield(cfg, 'runica') || ~isfield(cfg.runica, 'pca'))
% user has specified cfg.numcomponent and not specified
% cfg.runica.pca, so copy cfg.numcomponent over
cfg.runica.pca = cfg.numcomponent;
elseif ~defaultNumCompsUsed &&...
isfield(cfg, 'runica') && isfield(cfg.runica, 'pca')
% user specified both cfg.numcomponent and cfg.runica.pca,
% unsure which one to use
ft_error('you can specify either cfg.runica.pca or cfg.numcomponent (they will have the same effect), but not both');
end
% construct key-value pairs for the optional arguments
optarg = [ft_cfg2keyval(cfg.runica) {'reset_randomseed' 0}]; % let FieldTrip deal with the random seed handling
[weights, sphere] = runica(dat, optarg{:});
% scale the sphering matrix to unit norm
if strcmp(cfg.normalisesphere, 'yes')
sphere = sphere./norm(sphere);
end
unmixing = weights*sphere;
mixing = [];
case 'binica'
% check whether the required low-level toolboxes are installed
% see http://www.sccn.ucsd.edu/eeglab
ft_hastoolbox('eeglab', 1);
if ~defaultNumCompsUsed &&...
(~isfield(cfg, 'binica') || ~isfield(cfg.binica, 'pca'))
% user has specified cfg.numcomponent and not specified
% cfg.binica.pca, so copy cfg.numcomponent over
cfg.binica.pca = cfg.numcomponent;
elseif ~defaultNumCompsUsed &&...
isfield(cfg, 'binica') && isfield(cfg.binica, 'pca')
% user specified both cfg.numcomponent and cfg.binica.pca,
% unsure which one to use
ft_error('you can specify either cfg.binica.pca or cfg.numcomponent (they will have the same effect), but not both');
end
% construct key-value pairs for the optional arguments
optarg = ft_cfg2keyval(cfg.binica);
[weights, sphere] = binica(dat, optarg{:});
% scale the sphering matrix to unit norm
if strcmp(cfg.normalisesphere, 'yes')
sphere = sphere./norm(sphere);
end
unmixing = weights*sphere;
mixing = [];
case 'jader'
% check whether the required low-level toolboxes are installed
% see http://www.sccn.ucsd.edu/eeglab
ft_hastoolbox('eeglab', 1);
unmixing = jader(dat, cfg.numcomponent);
mixing = [];
case 'varimax'
% check whether the required low-level toolboxes are installed
% see http://www.sccn.ucsd.edu/eeglab
ft_hastoolbox('eeglab', 1);
unmixing = varimax(dat);
mixing = [];
case 'cca'
% check whether the required low-level toolboxes are installed
% see http://www.sccn.ucsd.edu/eeglab
ft_hastoolbox('cca', 1);
[y, w] = ccabss(dat);
unmixing = w';
mixing = [];
case 'pca'
% compute data cross-covariance matrix
C = (dat*dat')./(size(dat,2)-1);
% eigenvalue decomposition (EVD)
[E,D] = eig(C);
% sort eigenvectors in descending order of eigenvalues
d = cat(2,(1:1:Nchans)',diag(D));
d = sortrows(d, -2);
% return the desired number of principal components
unmixing = E(:,d(1:cfg.numcomponent,1))';
mixing = [];
clear C D E d
case 'kpca'
% linear kernel (same as normal covariance)
%kern = @(X,y) (sum(bsxfun(@times, X, y),2));
% polynomial kernel degree 2
%kern = @(X,y) (sum(bsxfun(@times, X, y),2).^2);
% RBF kernel
kern = @(X,y) (exp(-0.5* sqrt(sum(bsxfun(@minus, X, y).^2, 2))));
% compute kernel matrix
C = zeros(Nchans,Nchans);
ft_progress('init', cfg.feedback, 'computing kernel matrix...');
for k = 1:Nchans
ft_progress(k/Nchans, 'computing kernel matrix %d from %d', k, Nchans);
C(k,:) = kern(dat, dat(k,:));
end
ft_progress('close');
% eigenvalue decomposition (EVD)
[E,D] = eig(C);
% sort eigenvectors in descending order of eigenvalues
d = cat(2,(1:1:Nchans)',diag(D));
d = sortrows(d, -2);
% return the desired number of principal components
unmixing = E(:,d(1:cfg.numcomponent,1))';
mixing = [];
clear C D E d
case 'svd'
% it is more memory efficient to use the (non-scaled) covariance
if cfg.numcomponent<Nchans
% compute only the first components
[u, s, v] = svds(dat*dat', cfg.numcomponent);
else
% compute all components
[u, s, v] = svd(dat*dat', 0);
end
clear s v % not needed
unmixing = u';
mixing = [];
case 'dss'
% check whether the required low-level toolboxes are installed
% see http://www.cis.hut.fi/projects/dss
ft_hastoolbox('dss', 1);
params = removefields(struct(cfg.dss), {'V' 'dV' 'W' 'indx'});
params.denf.h = str2func(cfg.dss.denf.function);
params.preprocf.h = str2func(cfg.dss.preprocf.function);
if ~ischar(cfg.numcomponent)
params.sdim = cfg.numcomponent;
end
if isfield(cfg.dss, 'wdim') && ~isempty(cfg.dss.wdim)
params.wdim = cfg.dss.wdim;
end
% create the state
state = dss_create_state(dat, params);
if isfield(cfg.dss, 'V') && ~isempty(cfg.dss.V)
state.V = cfg.dss.V;
state.Y = cfg.dss.V*dat;
end
if isfield(cfg.dss, 'dV') && ~isempty(cfg.dss.dV)
state.dV = cfg.dss.dV;
end
if isfield(cfg.dss, 'W') && ~isempty(cfg.dss.W)
state.W = cfg.dss.W;
end
if isfield(cfg.dss, 'indx') && ~isempty(cfg.dss.indx)
state.indx = cfg.dss.indx; %may be needed for dss_core_mim
end
% increase the amount of information that is displayed on screen
% state.verbose = 3;
% start the decomposition
state = denss(state); % this is for the DSS toolbox version 1.0
mixing = state.A;
unmixing = state.B;
% remember the updated configuration details
cfg.dss.denf = state.denf;
cfg.dss.orthof = state.orthof;
cfg.dss.preprocf = state.preprocf;
cfg.dss.stopf = state.stopf;
cfg.dss.W = state.W;
cfg.dss.V = state.V;
cfg.dss.dV = state.dV;
if isfield(state, 'D'), cfg.dss.D = state.D(1:min([state.sdim size(state.dV)])); end
cfg.numcomponent = min([state.sdim size(state.dV)]);
case 'sobi'
% check whether the required low-level toolboxes are installed
% see http://www.sccn.ucsd.edu/eeglab
ft_hastoolbox('eeglab', 1);
% check for additional options, see SOBI for details
if ~isfield(cfg, 'sobi')
mixing = sobi(dat, cfg.numcomponent);
elseif isfield(cfg.sobi, 'n_sources') && isfield(cfg.sobi, 'p_correlations')
mixing = sobi(dat, cfg.sobi.n_sources, cfg.sobi.p_correlations);
elseif isfield(cfg.sobi, 'n_sources')
mixing = sobi(dat,cfg.sobi.n_sources);
else
ft_error('unknown options for SOBI component analysis');
end
unmixing = [];
case 'predetermined unmixing matrix'
% check which labels from the cfg are identical to those of the data
% this gives us the rows of cfg.topo (the channels) and of
% data.trial (also channels) that we are going to use later
[datsel, chansel] = match_str(data.label, cfg.topolabel);
% ensure 1:1 corresponcence between cfg.topolabel & data.label
% otherwise we cannot compute the components (if source channels are
% missing) or will have a problem when projecting it back (because we
% dont have a marker to say that there are channels in data.label
% which we did not use and thus can't recover from source-space)
if length(cfg.topolabel)<length(chansel)
ft_error('cfg.topolabels do not uniquely correspond to data.label, please check')
end
if length(data.label)<length(datsel)
ft_error('cfg.topolabels do not uniquely correspond to data.label, please check')
end
% reorder the mixing matrix so that the channel order matches the order in the data
cfg.unmixing = cfg.unmixing(:,chansel);
cfg.topolabel = cfg.topolabel(chansel);
unmixing = cfg.unmixing;
mixing = [];
case 'white'
% compute the covariance matrix and an unmixing matrix that makes the data white
c = dat*dat';
c = c./(size(dat,2)-1);
[u, s] = svd(c);
% split the singular values into half
for i=1:size(s)
if (s(i,i)/s(1,1))>(100*eps)
s(i,i) = 1./sqrt(s(i,i));
else
s(i,i) = 0;
end
end
unmixing = s * u';
mixing = [];
case 'csp'
C1 = cov(dat1');
C2 = cov(dat2');
unmixing = csp(C1, C2, cfg.csp.numfilters);
mixing = []; % will be computed below
case 'bsscca'
% this method relies on time shifting of the original data, in much the
% same way as ft_denoise_tsr. as such it is more natural to represent
% the data in the cell-array, because the trial-boundaries are clear.
% if represented in a concatenated array one has to keep track of the
% trial boundaries
optarg = ft_cfg2keyval(cfg.bsscca);
optarg = cat(2,optarg, {'time', data.time});
[unmixing, mixing, rho, compdata, time] = bsscca(dat, optarg{:});
data.trial = mixing*compdata;
data.time = time;
data = removefields(data, 'sampleinfo');
if size(mixing,1)>numel(data.label)
for m = 1:(size(mixing,1)-numel(data.label))
data.label{end+1} = sprintf('refchan%03d',m);
end
end
% remember the canonical correlations
cfg.bsscca.rho = rho;
case 'parafac'
ft_error('parafac is not supported anymore in ft_componentanalysis');
otherwise
ft_error('unknown method for component analysis');
end % switch method
% make sure we have both mixing and unmixing matrices
% if not, compute (pseudo-)inverse to go from one to the other
if isempty(unmixing) && ~isempty(mixing)
if (size(mixing,1)==size(mixing,2))
unmixing = inv(mixing);
else
unmixing = pinv(mixing);
end
elseif isempty(mixing) && ~isempty(unmixing)
if (size(unmixing,1)==size(unmixing,2)) && rank(unmixing)==size(unmixing,1)
mixing = inv(unmixing);
else
mixing = pinv(unmixing);
end
elseif isempty(mixing) && isempty(unmixing)
% this sanity check is needed to catch convergence problems in fastica
% see http://bugzilla.fieldtriptoolbox.org/show_bug.cgi?id=1519
ft_error('the component unmixing failed');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% collect the results and construct data structure
comp = keepfields(data, {'time' 'fsample'});
% make sure we don't return more components than were requested
% (some methods respect the maxcomponent parameters, others just always
% return a fixed (i.e., numchans) number of components)
if size(unmixing,1) > cfg.numcomponent
unmixing(cfg.numcomponent+1:end,:) = [];
end
if size(mixing,2) > cfg.numcomponent
mixing(:,cfg.numcomponent+1:end) = [];
end
% compute the activations in each trial
if strcmp(cfg.doscale, 'yes')
for trial=1:Ntrials
comp.trial{trial} = scale * unmixing * data.trial{trial};
end
else
for trial=1:Ntrials
comp.trial{trial} = unmixing * data.trial{trial};
end
end
% store mixing/unmixing matrices in structure
comp.topo = mixing;
comp.unmixing = unmixing;
% get the labels
if strcmp(cfg.method, 'predetermined unmixing matrix')
prefix = 'component';
else
prefix = cfg.method;
end
st = dbstack;
if numel(st)>1 && isequal(st(2).name, 'ft_componentanalysis')
% this is a recursive call, as per the cfg.split option, add something
% extra to the prefix
chantype = ft_getopt(cfg, 'chantype', '');
prefix = [prefix chantype];
end
for k = 1:size(comp.topo,2)
comp.label{k,1} = sprintf('%s%03d', prefix, k);
end
comp.topolabel = data.label(:);
sensfield = cell(0,1);
if isfield(data, 'grad')
sensfield{end+1} = 'grad';
end
if isfield(data, 'elec')
sensfield{end+1} = 'elec';
end
if isfield(data, 'opto')
sensfield{end+1} = 'opto';
end
% apply the linear projection also to the sensor description
if ~isempty(sensfield)
if strcmp(cfg.updatesens, 'yes')
% construct a montage and apply it to the sensor description
montage = [];
montage.labelold = data.label;
montage.labelnew = comp.label;
montage.tra = unmixing;
for m = 1:numel(sensfield)
ft_info('also applying the unmixing matrix to the %s structure\n', sensfield{m});
comp.(sensfield{m}) = ft_apply_montage(data.(sensfield{m}), montage, 'balancename', 'comp', 'keepunused', 'yes');
% The output sensor array cannot simply be interpreted as the input
% sensor array, hence the type should be removed to allow autodetection
% See also http://bugzilla.fieldtriptoolbox.org/show_bug.cgi?id=1806
if isfield(comp.(sensfield{m}), 'type')
comp.(sensfield{m}) = rmfield(comp.(sensfield{m}), 'type');
end
end
else
for m = 1:numel(sensfield)
ft_info('not applying the unmixing matrix to the %s structure\n', sensfield{m});
% simply copy it over
comp.(sensfield{m}) = data.(sensfield{m});
end
end
end % if sensfield
% copy the sampleinfo into the output
if isfield(data, 'sampleinfo')
comp.sampleinfo = data.sampleinfo;
end
% copy the trialinfo into the output
if isfield(data, 'trialinfo')
comp.trialinfo = data.trialinfo;
end
% convert back to input type if necessary
if istimelock
comp = ft_checkdata(comp, 'datatype', 'timelock+comp');
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble randomseed
ft_postamble previous data
ft_postamble provenance comp
ft_postamble history comp
ft_postamble savevar comp