forked from fieldtrip/fieldtrip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathft_channelnormalise.m
170 lines (149 loc) · 5.68 KB
/
ft_channelnormalise.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
function [dataout] = ft_channelnormalise(cfg, data)
% FT_CHANNELNORMALISE shifts and scales all channels of the the input data.
% The default behavior is to subtract each channel's mean, and scale to a
% standard deviation of 1, for each channel individually.
%
% Use as
% [dataout] = ft_channelnormalise(cfg, data)
%
% The configuration can contain
% cfg.channel = 'all', or a selection of channels
% cfg.trials = 'all' or a selection given as a 1xN vector (default = 'all')
% cfg.demean = 'yes' or 'no' (or boolean value) (default = 'yes')
% cfg.scale = scalar value used for scaling (default = 1)
% cfg.method = 'perchannel', or 'acrosschannel', computes the
% standard deviation per channel, or across all channels.
% The latter method leads to the same scaling across
% channels and preserves topographical distributions
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% cfg.outputfile = ...
% If you specify one of these (or both) the input data will be read from a *.mat
% file on disk and/or the output data will be written to a *.mat file. These mat
% files should contain only a single variable, corresponding with the
% input/output structure.
%
% See also FT_COMPONENTANALYSIS, FT_FREQBASELINE, FT_TIMELOCKBASELINE
%
% Copyright (C) 2010, Jan-Mathijs Schoffelen
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar data
ft_preamble provenance data
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% store the original datatype
dtype = ft_datatype(data);
% check if the input data is valid for this function
data = ft_checkdata(data, 'datatype', 'raw', 'feedback', 'yes');
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'forbidden', {'channels', 'trial'}); % prevent accidental typos, see issue 1729
% set the defaults
cfg.channel = ft_getopt(cfg, 'channel', 'all');
cfg.trials = ft_getopt(cfg, 'trials', 'all', 1);
cfg.scale = ft_getopt(cfg, 'scale', 1);
cfg.demean = ft_getopt(cfg, 'demean', 'yes');
cfg.method = ft_getopt(cfg, 'method', 'perchannel'); % or acrosschannel
if ~strcmp(cfg.channel, 'all') || ~strcmp(cfg.trials, 'all')
% select channels and trials of interest
tmpcfg = keepfields(cfg, {'trials', 'channel', 'tolerance', 'showcallinfo'});
data = ft_selectdata(tmpcfg, data);
% restore the provenance information
[cfg, data] = rollback_provenance(cfg, data);
end
% initialise some variables
nchan = numel(data.label);
ntrl = numel(data.trial);
datsum = zeros(nchan,1);
datssq = zeros(nchan,1);
% create output data, omitting sensor information
% FIXME this can be kept, provided the scaling is built in appropriately
dataout = [];
dataout.label = data.label;
dataout.trial = cell(1,ntrl);
dataout.time = data.time;
% some fields from the input should be copied over in the output
copyfield = {'fsample', 'sampleinfo', 'trialinfo'};
for i=1:length(copyfield)
if isfield(data, copyfield{i})
dataout.(copyfield{i}) = data.(copyfield{i});
end
end
% compute the sum and sum-of-squares
n = zeros(numel(data.label), numel(data.trial));
for k = 1:ntrl
n(:,k) = sum(~isnan(data.trial{k}),2);
datsum = datsum + nansum(data.trial{k},2);
datssq = datssq + nansum(data.trial{k}.^2,2);
end
% compute the mean always per channel
datmean = datsum./nansum(n, 2);
if strcmp(cfg.method, 'perchannel')
% keep the intermediate sum and sum-of-squares as they are
elseif strcmp(cfg.method, 'acrosschannel')
% update the intermediate sum and sum-of-squares in order to compute std across channels
datsum(:) = nansum(datsum);
datssq(:) = nansum(datssq);
n = repmat(nansum(n, 1), size(n, 1), 1);
else
ft_error('unsupported method "%s"', cfg.method);
end
% this is a quick way to compute the std from the sum and sum-of-squared values
datstd = sqrt( (datssq - (datsum.^2)./nansum(n, 2))./nansum(n, 2));
% keep mean and std in output cfg
if istrue(cfg.demean)
cfg.mu = datmean;
else
cfg.mu = [];
end
cfg.sigma = datstd;
% demean and normalise
for k = 1:ntrl
onesvec = ones(1,size(data.trial{k},2));
if istrue(cfg.demean)
dataout.trial{k} = cfg.scale * (data.trial{k}-datmean(:,onesvec))./datstd(:,onesvec);
else
dataout.trial{k} = cfg.scale * data.trial{k}./datstd(:,onesvec);
end
end
% convert back to input type if necessary
switch dtype
case 'timelock'
dataout = ft_checkdata(dataout, 'datatype', 'timelock');
otherwise
% keep the output as it is
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous data
ft_postamble provenance dataout
ft_postamble history dataout
ft_postamble savevar dataout