-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalyze_flex_ddG.py
executable file
·255 lines (207 loc) · 11.6 KB
/
analyze_flex_ddG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
#!/usr/bin/python3
import sys
import os
import sqlite3
import shutil
import tempfile
from pprint import pprint
import pandas as pd
import numpy as np
import re
import datetime
import sys
import collections
import threading
rosetta_output_file_name = 'rosetta.out'
output_database_name = 'ddG.db3'
#trajectory_stride = 5
#trajectory_stride = 7000
trajectory_stride = 10000
script_output_folder = 'Temp/analysis_output'
zemu_gam_params = {
'fa_sol' : (6.940, -6.722),
'hbond_sc' : (1.902, -1.999),
'hbond_bb_sc' : (0.063, 0.452),
'fa_rep' : (1.659, -0.836),
'fa_elec' : (0.697, -0.122),
'hbond_lr_bb' : (2.738, -1.179),
'fa_atr' : (2.313, -1.649),
}
def gam_function(x, score_term = None ):
return -1.0 * np.exp( zemu_gam_params[score_term][0] ) + 2.0 * np.exp( zemu_gam_params[score_term][0] ) / ( 1.0 + np.exp( -1.0 * x * np.exp( zemu_gam_params[score_term][1] ) ) )
def apply_zemu_gam(scores):
new_columns = list(scores.columns)
new_columns.remove('total_score')
scores = scores.copy()[ new_columns ]
for score_term in zemu_gam_params:
assert( score_term in scores.columns )
scores[score_term] = scores[score_term].apply( gam_function, score_term = score_term )
scores[ 'total_score' ] = scores[ list(zemu_gam_params.keys()) ].sum( axis = 1 )
scores[ 'score_function_name' ] = scores[ 'score_function_name' ] + '-gam'
return scores
def rosetta_output_succeeded( potential_struct_dir ):
path_to_rosetta_output = os.path.join( potential_struct_dir, rosetta_output_file_name )
if not os.path.isfile(path_to_rosetta_output):
return False
db3_file = os.path.join( potential_struct_dir, output_database_name )
if not os.path.isfile( db3_file ):
return False
success_line_found = False
no_more_batches_line_found = False
with open( path_to_rosetta_output, 'r' ) as f:
for line in f:
if line.startswith( 'protocols.jd2.JobDistributor' ) and 'reported success in' in line:
success_line_found = True
if line.startswith( 'protocols.jd2.JobDistributor' ) and 'no more batches to process' in line:
no_more_batches_line_found = True
return no_more_batches_line_found and success_line_found
def find_finished_jobs( output_folder ):
return_dict = {}
job_dirs = [ os.path.abspath(os.path.join(output_folder, d)) for d in os.listdir(output_folder) if os.path.isdir( os.path.join(output_folder, d) )]
for job_dir in job_dirs:
completed_struct_dirs = []
for potential_struct_dir in sorted([ os.path.abspath(os.path.join(job_dir, d)) for d in os.listdir(job_dir) if os.path.isdir( os.path.join(job_dir, d) )]):
if rosetta_output_succeeded( potential_struct_dir ):
completed_struct_dirs.append( potential_struct_dir )
return_dict[job_dir] = completed_struct_dirs
return return_dict
def get_scores_from_db3_file(db3_file, struct_number, case_name):
conn = sqlite3.connect(db3_file)
conn.row_factory = sqlite3.Row
c = conn.cursor()
num_batches = c.execute('SELECT max(batch_id) from batches').fetchone()[0]
scores = pd.read_sql_query('''
SELECT batches.name, structure_scores.struct_id, score_types.score_type_name, structure_scores.score_value, score_function_method_options.score_function_name from structure_scores
INNER JOIN batches ON batches.batch_id=structure_scores.batch_id
INNER JOIN score_function_method_options ON score_function_method_options.batch_id=batches.batch_id
INNER JOIN score_types ON score_types.batch_id=structure_scores.batch_id AND score_types.score_type_id=structure_scores.score_type_id
''', conn)
def renumber_struct_id( struct_id ):
return trajectory_stride * ( 1 + (int(struct_id-1) // num_batches) )
scores['struct_id'] = scores['struct_id'].apply( renumber_struct_id )
scores['name'] = scores['name'].apply( lambda x: x[:-9] if x.endswith('_dbreport') else x )
scores = scores.pivot_table( index = ['name', 'struct_id', 'score_function_name'], columns = 'score_type_name', values = 'score_value' ).reset_index()
scores.rename( columns = {
'name' : 'state',
'struct_id' : 'backrub_steps',
}, inplace=True)
scores['struct_num'] = struct_number
scores['case_name'] = case_name
conn.close()
return scores
def process_finished_struct( output_path, case_name ):
db3_file = os.path.join( output_path, output_database_name )
assert( os.path.isfile( db3_file ) )
struct_number = int( os.path.basename(output_path) )
scores_df = get_scores_from_db3_file( db3_file, struct_number, case_name )
return scores_df
def calc_ddg( scores ):
total_structs = np.max( scores['struct_num'] )
nstructs_to_analyze = set([total_structs])
for x in range(10, total_structs):
if x % 10 == 0:
nstructs_to_analyze.add(x)
nstructs_to_analyze = sorted(nstructs_to_analyze)
all_ddg_scores = []
for nstructs in nstructs_to_analyze:
ddg_scores = scores.loc[ ((scores['state'] == 'unbound_mut') | (scores['state'] == 'bound_wt')) & (scores['struct_num'] <= nstructs) ].copy()
for column in ddg_scores.columns:
if column not in ['state', 'case_name', 'backrub_steps', 'struct_num', 'score_function_name']:
ddg_scores.loc[:,column] *= -1.0
ddg_scores = ddg_scores.append( scores.loc[ ((scores['state'] == 'unbound_wt') | (scores['state'] == 'bound_mut')) & (scores['struct_num'] <= nstructs) ].copy() )
ddg_scores = ddg_scores.groupby( ['case_name', 'backrub_steps', 'struct_num', 'score_function_name'] ).sum().reset_index()
if nstructs == total_structs:
struct_scores = ddg_scores.copy()
ddg_scores = ddg_scores.groupby( ['case_name', 'backrub_steps', 'score_function_name'] ).mean().round(decimals=5).reset_index()
new_columns = list(ddg_scores.columns.values)
new_columns.remove( 'struct_num' )
ddg_scores = ddg_scores[new_columns]
ddg_scores[ 'scored_state' ] = 'ddG'
ddg_scores[ 'nstruct' ] = nstructs
all_ddg_scores.append(ddg_scores)
return (pd.concat(all_ddg_scores), struct_scores)
def calc_dgs( scores ):
l = []
total_structs = np.max( scores['struct_num'] )
nstructs_to_analyze = set([total_structs])
for x in range(10, total_structs):
if x % 10 == 0:
nstructs_to_analyze.add(x)
nstructs_to_analyze = sorted(nstructs_to_analyze)
for state in ['mut', 'wt']:
for nstructs in nstructs_to_analyze:
dg_scores = scores.loc[ (scores['state'].str.endswith(state)) & (scores['state'].str.startswith('unbound')) & (scores['struct_num'] <= nstructs) ].copy()
for column in dg_scores.columns:
if column not in ['state', 'case_name', 'backrub_steps', 'struct_num', 'score_function_name']:
dg_scores.loc[:,column] *= -1.0
dg_scores = dg_scores.append( scores.loc[ (scores['state'].str.endswith(state)) & (scores['state'].str.startswith('bound')) & (scores['struct_num'] <= nstructs) ].copy() )
dg_scores = dg_scores.groupby( ['case_name', 'backrub_steps', 'struct_num', 'score_function_name'] ).sum().reset_index()
dg_scores = dg_scores.groupby( ['case_name', 'backrub_steps', 'score_function_name'] ).mean().round(decimals=5).reset_index()
new_columns = list(dg_scores.columns.values)
new_columns.remove( 'struct_num' )
dg_scores = dg_scores[new_columns]
dg_scores[ 'scored_state' ] = state + '_dG'
dg_scores[ 'nstruct' ] = nstructs
l.append( dg_scores )
return l
def analyze_output_folder( output_folder ):
# Pass in an outer output folder. Subdirectories are considered different mutation cases, with subdirectories of different structures.
finished_jobs = find_finished_jobs( output_folder )
if len(finished_jobs) == 0:
print( 'No finished jobs found' )
return
ddg_scores_dfs = []
struct_scores_dfs = []
for finished_job, finished_structs in finished_jobs.items():
inner_scores_list = []
for finished_struct in finished_structs:
inner_scores = process_finished_struct( finished_struct, os.path.basename(finished_job) )
inner_scores_list.append( inner_scores )
scores = pd.concat( inner_scores_list )
######################
# 'dslf_fa13' is removed from list!
_score_list = ['backrub_steps','case_name','fa_atr','fa_dun','fa_elec','fa_intra_rep','fa_rep','fa_sol','hbond_bb_sc','hbond_lr_bb','hbond_sc','hbond_sr_bb','nstruct','omega','p_aa_pp','pro_close','rama','ref','score_function_name','scored_state','total_score','yhh_planarity']
_score_list_numer = ['fa_atr','fa_dun','fa_elec','fa_intra_rep','fa_rep','fa_sol','hbond_bb_sc','hbond_lr_bb','hbond_sc','hbond_sr_bb','omega','p_aa_pp','pro_close','rama','ref','total_score','yhh_planarity']
scores_tmp = scores.copy()
scores_tmp = scores_tmp.loc[(scores_tmp["score_function_name"] == "fa_talaris2014") & (scores_tmp["backrub_steps"] == trajectory_stride)]
scores_tmp['struct_num'] = np.max(scores['struct_num'])
scores_tmp = scores_tmp.rename(columns={"struct_num": "nstruct"}).rename(columns={"state": "scored_state"})
mt_bound = scores_tmp[scores_tmp["scored_state"] == "bound_mut"][_score_list].reset_index().drop(['index'], axis=1)
mt_bound["scored_state"] = "mut_dG"
mt_unbound = scores_tmp[scores_tmp["scored_state"] == "unbound_mut"][_score_list].reset_index().drop(['index'], axis=1)
mt_unbound["scored_state"] = "mut_dG"
dG_affine_mt = mt_bound.copy()
for col in _score_list_numer:
dG_affine_mt[col] -= mt_unbound[col]
wt_bound = scores_tmp[scores_tmp["scored_state"] == "bound_wt"][_score_list].reset_index().drop(['index'], axis=1)
wt_bound["scored_state"] = "wt_dG"
wt_unbound = scores_tmp[scores_tmp["scored_state"] == "unbound_wt"][_score_list].reset_index().drop(['index'], axis=1)
wt_unbound["scored_state"] = "wt_dG"
dG_affine_wt = wt_bound.copy()
for col in _score_list_numer:
dG_affine_wt[col] -= wt_unbound[col]
#print(dG_affine_mt)
#print(dG_affine_wt)
dG_affine_mt.to_csv( os.path.join(script_output_folder, '-results_all_models_mt.csv') )
dG_affine_wt.to_csv( os.path.join(script_output_folder, '-results_all_models_wt.csv') )
######################
ddg_scores, struct_scores = calc_ddg( scores )
struct_scores_dfs.append( struct_scores )
ddg_scores_dfs.append( ddg_scores )
ddg_scores_dfs.append( apply_zemu_gam(ddg_scores) )
ddg_scores_dfs.extend( calc_dgs( scores ) )
if not os.path.isdir(script_output_folder):
os.makedirs(script_output_folder)
basename = os.path.basename(output_folder)
pd.concat( struct_scores_dfs ).to_csv( os.path.join(script_output_folder, basename + '-struct_scores_results.csv' ) )
df = pd.concat( ddg_scores_dfs )
df.to_csv( os.path.join(script_output_folder, basename + '-results.csv') )
display_columns = ['backrub_steps', 'case_name', 'nstruct', 'score_function_name', 'scored_state', 'total_score']
for score_type in ['mut_dG', 'wt_dG', 'ddG']:
print( score_type )
print( df.loc[ df['scored_state'] == score_type ][display_columns].head( n = 20 ) )
print( '' )
if __name__ == '__main__':
for folder_to_analyze in sys.argv[1:]:
if os.path.isdir( folder_to_analyze ):
analyze_output_folder( folder_to_analyze )