-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtokenization_albert_bengali_fast.py
103 lines (86 loc) · 4.35 KB
/
tokenization_albert_bengali_fast.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
from typing import Optional, Tuple
from transformers import AddedToken, PreTrainedTokenizerFast
VOCAB_FILES_NAMES = {"tokenizer_file": "tokenizer.json"}
PRETRAINED_VOCAB_FILES_MAP = {
"tokenizer_file": {
"bengali-tokenizer": "tokenizer/data/tokenizer.json",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"bengali-tokenizer": 512,
}
class AlbertBengaliTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" Albert Bengali tokenizer.
This tokenizer inherits from :class:`~transformers.PreTrainedTokenizerFast` which contains most of the main
methods. Users should refer to this superclass for more information regarding those methods.
Args:
tokenizer_file ():obj:`str`):
path to the json file containing the fast tokenizer.
bos_token (:obj:`str`, `optional`, defaults to :obj:`"[CLS]"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
.. note::
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the :obj:`cls_token`.
eos_token (:obj:`str`, `optional`, defaults to :obj:`"[SEP]"`):
The end of sequence token.
.. note::
When building a sequence using special tokens, this is not the token that is used for the end of
sequence. The token used is the :obj:`sep_token`.
sep_token (:obj:`str`, `optional`, defaults to :obj:`"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (:obj:`str`, `optional`, defaults to :obj:`"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (:obj:`str`, `optional`, defaults to :obj:`"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (:obj:`str`, `optional`, defaults to :obj:`"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
mask_token (:obj:`str`, `optional`, defaults to :obj:`"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
additional_special_tokens (:obj:`List[str]`, `optional`, defaults to :obj:`["<s>NOTUSED", "</s>NOTUSED"]`):
Additional special tokens used by the tokenizer.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__(
self,
tokenizer_file,
bos_token="[CLS]",
eos_token="[SEP]",
unk_token="<unk>",
sep_token="[SEP]",
pad_token="<pad>",
cls_token="[CLS]",
mask_token="[MASK]",
padding_side="right",
model_max_length=512,
**kwargs,
):
# Mask token behave like a normal word, i.e. include the space before it
mask_token = (
AddedToken(mask_token, lstrip=False, rstrip=False, normalized=False)
if isinstance(mask_token, str)
else mask_token
)
super().__init__(
tokenizer_file=tokenizer_file,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
model_max_length=model_max_length,
**kwargs,
)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
return super()._save_pretrained(
file_names=(), save_directory=save_directory, filename_prefix=filename_prefix, legacy_format=False
)