-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathembeddings_utils.py
75 lines (57 loc) · 1.8 KB
/
embeddings_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import numpy as np
from textblob import TextBlob
import os
def word_count(text):
"""
Count the number of words in a text.
Args:
text (str): The input text.
Returns:
int: The number of words in the text.
"""
return len(text.split())
def split_sentences(text):
"""
Split a text into sentences.
Args:
text (str): The input text.
Returns:
list: The list of sentences in the text.
"""
return [str(sentence) for sentence in TextBlob(text).sentences]
def pad_or_truncate_sentences(sentences_list, num_sentences=3):
"""
Pad or truncate a list of sentences to a specified number of sentences.
Args:
sentences_list (list): The list of sentences.
num_sentences (int, optional): The desired number of sentences. Defaults to 3.
Returns:
list: The padded or truncated list of sentences.
"""
if len(sentences_list) > num_sentences:
return sentences_list[:num_sentences]
else:
return sentences_list + [''] * (num_sentences - len(sentences_list))
# Load the embeddings from disk
import os
import numpy as np
def load_embeddings(path_to_embeddings, prefix):
"""
Load embeddings from multiple files with a given prefix.
Args:
path_to_embeddings (str): The path to the directory containing the embeddings files.
prefix (str): The prefix used in the filenames of the embeddings files.
Returns:
list: A list of loaded embeddings.
"""
embeddings = []
i = 0
while True:
file_path = f'{path_to_embeddings}/{prefix}_embedding_{i}.npy'
if os.path.exists(file_path):
emb = np.load(file_path, allow_pickle=True)
embeddings.append(emb)
i += 1
else:
break
return embeddings