forked from liuchunsense/AFFGA-Net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_net.py
347 lines (282 loc) · 13 KB
/
train_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import datetime
import os
import sys
import argparse
import logging
import cv2
import time
import numpy as np
import random
import torch
import torch.utils.data
import torch.optim as optim
import tensorboardX
from torchsummary import summary
from utils.data.evaluation import evaluation
from utils.data import get_dataset
from utils.saver import Saver
from models import get_network
from models.common import post_process_output
from models.loss import compute_loss
logging.basicConfig(level=logging.INFO)
def parse_args():
parser = argparse.ArgumentParser(description='Train AFFGA-Net')
# 数据集
parser.add_argument('--dataset-path', default='/home/wangdx/dataset/cornell_clutter/data/', type=str, help='Path to dataset')
parser.add_argument('--test-mode', type=str, default='all-wise', choices=['image-wise', 'object-wise', 'all-wise'], help='测试方式')
parser.add_argument('--data-list', type=str, default='train-test-all', choices=['train-test-origin', 'train-test-single', 'train-test-mutil'], help='数据列表文件夹')
# 训练超参数
parser.add_argument('--finetune', type=bool, default=False, help='是否微调')
parser.add_argument('--batch-size', type=int, default=8, help='Batch size')
parser.add_argument('--epochs', type=int, default=500, help='Training epochs')
parser.add_argument('--lr', type=float, default=1e-3, help='初始学习率')
parser.add_argument('--lr-scheduler', type=str, default='poly', help='学习率衰减模式')
parser.add_argument('--num-workers', type=int, default=8, help='Dataset workers')
# 抓取表示超参数
parser.add_argument('--angle-cls', type=int, default=120, help='抓取角分类数')
parser.add_argument('--bottom', type=int, default=30, help='抓取器尺寸')
parser.add_argument('--eval-mode', type=str, default='max', choices=['peak', 'all', 'max'], help='抓取评估方法')
# 保存地址
parser.add_argument('--outdir', type=str, default='output', help='Training Output Directory')
parser.add_argument('--modeldir', type=str, default='models', help='model保存地址')
parser.add_argument('--logdir', type=str, default='tensorboard', help='summary保存文件夹')
parser.add_argument('--imgdir', type=str, default='img', help='中间预测图保存文件夹')
parser.add_argument('--max_models', type=int, default='5', help='最大保存的模型数')
# cuda
parser.add_argument('--device-name', type=str, default='cuda:1', choices=['cpu', 'cuda:0', 'cuda:1'], help='是否使用GPU')
# description
parser.add_argument('--description', type=str, default='train2', help='Training description')
# 从已有网络继续训练
parser.add_argument('--goon-train', type=bool, default=False, help='是否从已有网络继续训练')
parser.add_argument('--model', type=str, default='path_to_pretrained_model', help='保存的模型')
parser.add_argument('--start-epoch', type=int, default=0, help='继续训练开始的epoch')
args = parser.parse_args()
return args
def validate(net, device, val_data, saver, args):
"""
Run validation.
:param net: 网络
:param device:
:param val_data: 验证数据集
:param saver: 保存器
:param args:
:return: Successes, Failures and Losses
"""
net.eval()
results = {
'correct': 0,
'failed': 0,
'loss': 0,
'graspable': 0,
'fail': [],
'losses': {
}
}
ld = len(val_data)
with torch.no_grad(): # 不计算梯度,不反向传播
batch_idx = 0
for x, y in val_data:
batch_idx += 1
print ("\r Validating... {:.2f}".format(batch_idx/ld), end="")
lossd = compute_loss(net, x.to(device), y.to(device), device)
# 统计损失
loss = lossd['loss'] # 损失和
results['loss'] += loss.item()/ld # 损失累加
for ln, l in lossd['losses'].items(): # 添加单项损失
if ln not in results['losses']:
results['losses'][ln] = 0
results['losses'][ln] += l.item()/ld
# 输出值预处理
able_out, angle_out, width_out = post_process_output(lossd['pred']['able'], lossd['pred']['angle'], lossd['pred']['width'])
# 保存预测图
# saver.save_img(epoch, batch_idx, [able_out_0, able_out_1, yc])
# 评估
results['graspable'] += np.max(able_out)/ld
ret = evaluation(able_out, angle_out, width_out, y, args.angle_cls, args.eval_mode, desc='1')
if ret:
results['correct'] += 1
else:
results['failed'] += 1
results['fail'].append(batch_idx)
return results
def train(epoch, net, device, train_data, optimizer):
"""
Run one training epoch
:param epoch: Current epoch
:param net: Network
:param device: Torch device
:param optimizer: Optimizer
:return: Average Losses for Epoch
"""
results = {
'loss': 0,
'losses': {
}
}
net.train()
batch_idx = 0
sum_batch = len(train_data)
for x, y in train_data:
"""
x = (-1, 3, 320, 320)
y = (-1, 2 + angle_k, 320, 320)
"""
batch_idx += 1
# 计算损失
lossd = compute_loss(net, x.to(device), y.to(device), device)
loss = lossd['loss'] # 损失和
logging.info('Epoch: {}, '
'Batch: {}/{}, '
'able_loss: {:.5f}, '
'angle_loss: {:.5f}, '
'width_loss: {:.5f}, '
'Loss: {:0.5f}'.format(
epoch, batch_idx, sum_batch,
lossd['losses']['able_loss'], lossd['losses']['angle_loss'], lossd['losses']['width_loss'], loss.item()))
# 统计损失
results['loss'] += loss.item()
for ln, l in lossd['losses'].items():
if ln not in results['losses']:
results['losses'][ln] = 0
results['losses'][ln] += l.item()
# 反向传播
optimizer.zero_grad()
loss.backward()
optimizer.step()
results['loss'] /= batch_idx # 计算一个epoch的损失均值
for l in results['losses']:
results['losses'][l] /= batch_idx
return results
def datasetloaders(Dataset, args):
train_dataset = Dataset(args.dataset_path,
data_list=args.data_list,
data='train',
num=-1,
test_mode=args.test_mode,
output_size=320,
angle_k=args.angle_cls,
argument=True)
train_data = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers)
train_val_dataset = Dataset(args.dataset_path,
data_list=args.data_list,
data='train',
num=-1,
test_mode=args.test_mode,
output_size=320,
angle_k=args.angle_cls)
train_val_data = torch.utils.data.DataLoader(
train_val_dataset,
batch_size=1,
shuffle=False,
num_workers=1)
# 加载测试集
val_dataset = Dataset(args.dataset_path,
data_list=args.data_list,
data='test',
num=-1,
test_mode=args.test_mode,
output_size=320,
angle_k=args.angle_cls)
val_data = torch.utils.data.DataLoader(
val_dataset,
batch_size=1,
shuffle=False,
num_workers=1)
return train_data, train_val_data, val_data
def run():
args = parse_args()
# 设置保存器
dt = datetime.datetime.now().strftime('%y%m%d_%H%M')
net_desc = '{}_{}'.format(dt, '_'.join(args.description.split()))
saver = Saver(args.outdir, args.logdir, args.modeldir, args.imgdir, net_desc)
# 初始化tensorboard 保存器
tb = saver.save_summary()
# 加载数据集
logging.info('Loading Dataset...')
Dataset = get_dataset()
train_data, train_val_data, val_data = datasetloaders(Dataset, args)
print('>> train dataset: {}'.format(len(train_data) * args.batch_size))
print('>> train_val dataset: {}'.format(len(train_val_data)))
print('>> test dataset: {}'.format(len(val_data)))
# 加载网络
logging.info('Loading Network...')
device_name = args.device_name if torch.cuda.is_available() else "cpu"
if args.goon_train:
# 从已有网络继续训练
net = torch.load(args.model, map_location=torch.device(device_name))
else:
# 新建网络训练
affga = get_network()
net = affga(angle_cls=args.angle_cls, device=device_name)
device = torch.device(device_name) # 指定运行设备
net = net.to(device)
# 微调,优化器
if args.finetune:
print('>> 微调网络')
for para in net.backbone.parameters():
para.requires_grad = False
optimizer = optim.Adam(filter(lambda p: p.requires_grad, net.parameters()), lr=args.lr*0.5)
else:
optimizer = optim.Adam(net.parameters(), lr=args.lr)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[100, 200, 300, 400], gamma=0.5) # 学习率衰减
logging.info('optimizer Done')
# 打印网络结构
# summary(net, (3, 320, 320)) # 将网络结构信息输出到终端
# saver.save_arch(net, (3, 320, 320)) # 保存至文件 output/arch.txt
# 训练
best_acc = 0.0
start_epoch = args.start_epoch if args.goon_train else 0
for _ in range(start_epoch):
scheduler.step()
for epoch in range(args.epochs)[start_epoch:]:
logging.info('Beginning Epoch {:02d}, lr={}'.format(epoch, optimizer.state_dict()['param_groups'][0]['lr']))
# 训练
train_results = train(epoch, net, device, train_data, optimizer)
scheduler.step()
# 保存训练日志
tb.add_scalar('loss/train_loss', train_results['loss'], epoch)
for n, l in train_results['losses'].items():
tb.add_scalar('train_loss/' + n, l, epoch)
if epoch % 5 == 0:
# 使用测试集验证
logging.info('>>> Validating...')
test_results = validate(net, device, val_data, saver, args)
# 打印日志
print('>>> test_graspable = {:.5f}'.format(test_results['graspable']))
print('>>> test_acc: %d/%d = %f' % (test_results['correct'], test_results['correct'] + test_results['failed'],
test_results['correct']/(test_results['correct']+test_results['failed'])))
print('>>> pred fail idx:', test_results['fail'])
# 保存测试集日志
tb.add_scalar('loss/val_IOU', test_results['correct'] / (test_results['correct'] + test_results['failed']), epoch)
tb.add_scalar('loss/val_loss', test_results['loss'], epoch)
tb.add_scalar('pred/val_graspable', test_results['graspable'], epoch)
for n, l in test_results['losses'].items():
tb.add_scalar('val_loss/' + n, l, epoch)
# 使用训练集进行验证
if epoch % 50 == 0:
train_val_results = validate(net, device, train_val_data, saver, args)
print('>>> train_graspable = {:.5f}'.format(train_val_results['graspable']))
print('>>> train_acc: %d/%d = %f' % (train_val_results['correct'], train_val_results['correct'] + train_val_results['failed'],
train_val_results['correct'] / (train_val_results['correct'] + train_val_results['failed'])))
tb.add_scalar('loss/train_val_IOU', train_val_results['correct'] / (train_val_results['correct'] + train_val_results['failed']), epoch)
tb.add_scalar('loss/train_val_loss', train_val_results['loss'], epoch)
tb.add_scalar('pred/train_val_graspable', train_val_results['graspable'], epoch)
for n, l in train_val_results['losses'].items():
tb.add_scalar('train_val_loss/' + n, l, epoch)
# 保存模型
accuracy = test_results['correct'] / (test_results['correct'] + test_results['failed'])
if accuracy >= best_acc :
print('>>> save model: ', 'epoch_%04d_iou_%0.4f' % (epoch, accuracy))
saver.save_model(net, 'epoch_%04d_iou_%0.4f' % (epoch, accuracy))
best_acc = accuracy
else:
print('>>> save model: ', 'epoch_%04d_iou_%0.4f_' % (epoch, accuracy))
saver.save_model(net, 'epoch_%04d_iou_%0.4f_' % (epoch, accuracy))
saver.remove_model(args.max_models) # 删除多余的模型
tb.close()
if __name__ == '__main__':
run()