-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathsnr_density.py
62 lines (52 loc) · 1.88 KB
/
snr_density.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import argparse
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
# arguments
parser = argparse.ArgumentParser(description='Density plot')
parser.add_argument('--model', type=str, required=True)
parser.add_argument('--defense', type=str, required=True)
parser.add_argument('--data', type=str, required=True)
opt = parser.parse_args()
if opt.data == 'cifar10':
nclass = 10
img_width = 32
elif opt.data == 'stl10':
nclass = 10
img_width = 96
elif opt.data == 'imagenet-sub':
nclass = 143
img_width = 64
else:
raise ValueError(f'Invalid dataset {opt.data}')
# load model
if opt.model == 'vgg':
from models.vgg_vi import VGG
net = nn.DataParallel(VGG(1.0, 1.0, 1.0, 'VGG16', nclass, img_width=img_width), device_ids=range(1))
elif opt.model == 'tiny':
from models.tiny_vi import Tiny
net = nn.DataParallel(Tiny(1.0, 1.0, 1.0, nclass), device_ids=range(1))
elif opt.model == 'aaron':
from models.aaron_vi import Aaron
net = nn.DataParallel(Aaron(1.0, 1.0, 1.0, nclass), device_ids=range(1))
else:
raise ValueError('invalid opt.model')
net.load_state_dict(torch.load(f'./checkpoint/{opt.data}_{opt.model}_{opt.defense}.pth'))
module_set = {'RandConv2d', 'RandBatchNorm2d', 'RandLinear'}
snr_buffer = []
# extract parameters recursively
def extract_param(module):
modname = type(module).__name__
if modname in module_set:
print(modname)
#snr = (torch.abs(module.mu_weight) / torch.exp(module.sigma_weight)).detach().view(-1).cpu().numpy().tolist()
snr = module.sigma_weight.detach().view(-1).cpu().numpy().tolist()
snr_buffer.extend(snr)
else:
for submod in module.children():
extract_param(submod)
extract_param(net)
with open(f'./snr_data/{opt.data}_{opt.model}_{opt.defense}.snr', 'w+') as f:
f.write('\n'.join([str(s) for s in snr_buffer]))