-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
292 lines (255 loc) · 10.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
from __future__ import division, print_function
import operator
import os
import time
from datetime import datetime
from pprint import pprint
import tensorflow as tf
from cascade_models import *
from utils import *
os.environ["CUDA_VISIBLE_DEVICES"] = FLAGS.cuda_device
flags = tf.compat.v1.flags
FLAGS = flags.FLAGS
# Set logs
LOG_DIR = "log/"
OUTPUT_DATA_DIR = "log/output/"
ensure_dir(LOG_DIR)
ensure_dir(OUTPUT_DATA_DIR)
datetime_str = datetime.now().strftime("%Y%m%d_%H%M%S")
today = datetime.today()
log_file = LOG_DIR + '%s_%s_%s_%s.log' % (FLAGS.dataset.split(
"/")[0], str(today.year), str(today.month), str(today.day))
def predict(sess, ATT_model, input_feed):
precisions, recalls, maps, num_samples, topk, decoder_targets =\
sess.run([ATT_model.precision_score, ATT_model.recall_score, ATT_model.map_score, ATT_model.relevance_scores, ATT_model.topk_filter, ATT_model.decoder_targets],feed_dict = input_feed)
return precisions, recalls, maps, num_samples.shape[0], topk, decoder_targets
with ExpLogger("DVGAE", log_file=log_file, datadir=OUTPUT_DATA_DIR) as logger:
# log training parameters
try:
logger.log(FLAGS.flag_values_dict())
except:
logger.log(FLAGS.__flags.items())
# Load data
# the datasets are expected to be pre-processed in a proper format.
# In general, the assumption that the node appearing in cascades must appear in the graph,
# while the vice-versa may not be true.
# So, the node indices will be created based on the graph.
A = load_graph(FLAGS.dataset)
if FLAGS.use_feats:
X = load_feats(FLAGS.dataset)
else:
X = np.eye(A.shape[0])
num_nodes = A.shape[0]
layers_config = list(map(int, FLAGS.vae_layer_config.split(",")))
if num_nodes % FLAGS.vae_batch_size == 0:
num_batches_vae = num_nodes // FLAGS.vae_batch_size
else:
num_batches_vae = num_nodes // FLAGS.vae_batch_size + 1
if FLAGS.graph_AE == 'GCN_AE':
num_batches_vae = 1
train_cascades, train_times = load_cascades(FLAGS.dataset, mode='train')
val_cascades, val_times = load_cascades(FLAGS.dataset, mode='val')
test_cascades, test_times = load_cascades(FLAGS.dataset, mode='test')
# load with truncating based on max_seq_length.
train_examples, train_examples_times = get_data_set(
FLAGS.dataset,
train_cascades,
train_times,
maxlen=FLAGS.max_seq_length,
mode='train')
val_examples, val_examples_times = get_data_set(FLAGS.dataset,
val_cascades,
val_times,
maxlen=FLAGS.max_seq_length,
mode='val')
test_examples, test_examples_times = get_data_set(
FLAGS.dataset,
test_cascades,
test_times,
maxlen=FLAGS.max_seq_length,
test_min_percent=FLAGS.test_min_percent,
test_max_percent=FLAGS.test_max_percent,
mode='test')
print("# nodes in graph", num_nodes)
print("# train cascades", len(train_cascades))
print("Init models")
CVGAE_model = CVGAE(X.shape[1], A, layers_config, mode='train', feats=X)
ATT_model = DiffusionAttention(num_nodes + 1,
train_examples,
train_examples_times,
val_examples,
val_examples_times,
test_examples,
test_examples_times,
logging=True,
mode='feed')
# Initialize session
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.compat.v1.Session(config=config)
# Init variables
print("Run global var initializer")
sess.run(tf.global_variables_initializer())
print("Starting queue runners")
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
z_vae_embeddings = np.zeros([num_nodes + 1, FLAGS.vae_latent_dim])
# pre-train
logger.log("======VAE Pre-train=======")
## Pre-training using simple VAE.
for epoch in range(FLAGS.pretrain_epochs):
losses = []
for b in range(0, num_batches_vae):
# Training step
input_feed = CVGAE_model.construct_feed_dict(
v_sender_all=z_vae_embeddings,
v_receiver_all=z_vae_embeddings,
pre_train=True,
dropout=FLAGS.vae_dropout_rate)
_, vae_embeds, indices, train_loss = sess.run([
CVGAE_model.opt_op, CVGAE_model.z_mean, CVGAE_model.node_indices,
CVGAE_model.vae_loss
], input_feed)
z_vae_embeddings[indices] = vae_embeds
losses.append(train_loss)
epoch_loss = np.mean(losses)
logger.log("Mean VAE loss at epoch: %04d %.5f" % (epoch + 1, epoch_loss))
logger.log("Pre-training completed")
# Initial run to get embeddings.
logger.log("Initial run to get embeddings")
for b in range(0, num_batches_vae):
t = time.time()
indices, z_val = sess.run([CVGAE_model.node_indices, CVGAE_model.z_mean])
z_vae_embeddings[indices] = z_val
s = time.time()
val_loss_all = []
sender_embeddings = np.copy(z_vae_embeddings)
receiver_embeddings = np.copy(z_vae_embeddings)
for epoch in range(FLAGS.epochs):
### TRAIN
### Step 1: VAE
losses = []
# Construct feed dictionary
input_feed = CVGAE_model.construct_feed_dict(
v_sender_all=sender_embeddings,
v_receiver_all=receiver_embeddings,
dropout=FLAGS.vae_dropout_rate)
for b in range(0, num_batches_vae):
# Training step
_, vae_embeds, indices, train_loss = sess.run([
CVGAE_model.opt_op, CVGAE_model.z_mean, CVGAE_model.node_indices,
CVGAE_model.cvgae_loss
], input_feed)
z_vae_embeddings[indices] = vae_embeds
losses.append(train_loss)
epoch_loss = np.mean(losses)
logger.log("Mean VAE loss at epoch: %04d %.5f" % (epoch + 1, epoch_loss))
### Step 2: Cascades
losses = []
# Construct feed dictionary
input_feed = ATT_model.construct_feed_dict(
z_vae_embeddings=z_vae_embeddings)
for b in range(0, ATT_model.num_train_batches_attention):
# Training step
_, train_loss = sess.run([ATT_model.opt_op, ATT_model.diffusion_loss],
input_feed)
losses.append(train_loss)
# re-assign based on updated s,r embeddings.
sender_embeddings = sess.run(ATT_model.structure_proxy_embeddings)
# currently not used.
receiver_embeddings = sess.run(ATT_model.receiver_embeddings)
epoch_loss = np.mean(losses)
logger.log("Mean Attention loss at epoch: %04d %.5f" %
(epoch + 1, epoch_loss))
### TEST
if epoch % FLAGS.test_freq == 0:
input_feed = CVGAE_model.construct_feed_dict(
v_sender_all=sender_embeddings,
v_receiver_all=receiver_embeddings,
dropout=0.)
for _ in range(0, num_batches_vae):
vae_embeds, indices = sess.run(
[CVGAE_model.z_mean, CVGAE_model.node_indices], input_feed)
z_vae_embeddings[indices] = vae_embeds
input_feed = ATT_model.construct_feed_dict(
z_vae_embeddings=z_vae_embeddings, is_test=True)
total_samples = 0
num_eval_k = len(ATT_model.k_list)
avg_map_scores = [0.] * num_eval_k
avg_precision_scores = [0.] * num_eval_k
avg_recall_scores = [0.] * num_eval_k
all_outputs = []
all_targets = []
for b in range(0, ATT_model.num_test_batches_attention):
precisions, recalls, maps, num_samples, decoder_outputs, decoder_targets = predict(
sess, ATT_model, input_feed)
all_outputs.append(decoder_outputs)
all_targets.append(decoder_targets)
avg_map_scores = list(
map(operator.add, map(operator.mul, maps,
[num_samples] * num_eval_k), avg_map_scores))
avg_precision_scores = list(
map(operator.add,
map(operator.mul, precisions, [num_samples] * num_eval_k),
avg_precision_scores))
avg_recall_scores = list(
map(operator.add,
map(operator.mul, recalls, [num_samples] * num_eval_k),
avg_recall_scores))
total_samples += num_samples
all_outputs = np.vstack(all_outputs)
all_targets = np.vstack(all_targets)
#print (avg_map_scores)
avg_map_scores = list(
map(operator.truediv, avg_map_scores, [total_samples] * num_eval_k))
avg_precision_scores = list(
map(operator.truediv, avg_precision_scores,
[total_samples] * num_eval_k))
avg_recall_scores = list(
map(operator.truediv, avg_recall_scores,
[total_samples] * num_eval_k))
metrics = dict()
for k in range(0, num_eval_k):
K = ATT_model.k_list[k]
metrics["MAP@%d" % K] = avg_map_scores[k]
metrics["Precision@%d" % K] = avg_precision_scores[k]
metrics["Recall@%d" % K] = avg_recall_scores[k]
logger.update_record(avg_map_scores[0],
(all_outputs, all_targets, metrics))
### VALIDATION
if epoch % FLAGS.val_freq == 0:
input_feed = CVGAE_model.construct_feed_dict(
v_sender_all=sender_embeddings,
v_receiver_all=receiver_embeddings,
dropout=0.)
for b in range(0, num_batches_vae):
vae_embeds, indices = sess.run(
[CVGAE_model.z_mean, CVGAE_model.node_indices], input_feed)
z_vae_embeddings[indices] = vae_embeds
losses = []
num_eval_k = len(ATT_model.k_list)
input_feed = ATT_model.construct_feed_dict(
z_vae_embeddings=z_vae_embeddings, is_val=True)
for b in range(0, ATT_model.num_val_batches_attention):
val_loss = \
sess.run([ATT_model.diffusion_loss], input_feed)
losses.append(val_loss)
epoch_loss = np.mean(losses)
val_loss_all.append(epoch_loss)
logger.log("Validation Attention loss at epoch: %04d %.5f" %
(epoch + 1, epoch_loss))
# early stopping
if len(
val_loss_all) >= FLAGS.early_stopping and val_loss_all[-1] > np.mean(
val_loss_all[-(FLAGS.early_stopping + 1):-1]):
logger.log("Early stopping at epoch: %04d" % (epoch + 1))
break
# print evaluation metrics
outputs, targets, metrics = logger.best_data
print("Evaluation metrics on test set:")
pprint(metrics)
# logger.save_data(outputs, "outputs")
# logger.save_data(targets, "targets")
# stop queue runners
coord.request_stop()
coord.join(threads)