-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresult_plot.py
37 lines (27 loc) · 1.06 KB
/
result_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import pickle
import numpy as np
import matplotlib.pyplot as plt
# pickle_in = open("train_accuracy.pickle","rb")
# train_accuracy_list = pickle.load(pickle_in)
# pickle_in = open("test_accuracy.pickle","rb")
# test_accuracy_list = pickle.load(pickle_in)
# epoch_list = range(len(train_accuracy_list))
# train = plt.scatter(epoch_list, train_accuracy_list, s=5, c='b', alpha=0.3)
# test = plt.scatter(epoch_list, test_accuracy_list, s=5, c='r', alpha=0.3)
# plt.xlabel('Iteration')
# plt.ylabel('Accuracy')
# plt.title('CNN model train/test dataset accuracy vs model training iterations')
# plt.legend((train, test), ('Training data', 'Testing data'), scatterpoints=1, loc = 'upper left', fontsize=9)
# plt.savefig('model_accuracy.png')
pickle_in = open("X_train","rb")
X_train = pickle.load(pickle_in)
print(X_train.shape)
pickle_in = open("Y_train","rb")
Y_train = pickle.load(pickle_in)
print(Y_train.shape)
pickle_in = open("X_test","rb")
X_test = pickle.load(pickle_in)
print(X_test.shape)
pickle_in = open("Y_test","rb")
Y_test = pickle.load(pickle_in)
print(Y_test.shape)