-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_search.py
290 lines (230 loc) · 12.1 KB
/
train_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# encoding: utf-8
import os
import sys
import time
import glob
import numpy as np
from numpy import linalg as LA
import logging
import argparse
import codecs
from copy import deepcopy
import json
import torch
import torch.nn as nn
import torch.utils
import torch.nn.functional as F
import torchvision.datasets as dset
import torch.backends.cudnn as cudnn
from thop import profile
from torch.autograd import Variable
import utils as utils
from model_search import Network
from model import NetworkCIFAR
from architect import Architect
from analyze import Analyzer
parser = argparse.ArgumentParser("cifar")
parser.add_argument('--data', type=str, default='/home/work/dataset/cifar/', help='location of the data corpus')
parser.add_argument('--batch_size', type=int, default=128, help='batch size')
parser.add_argument('--learning_rate', type=float, default=0.05, help='init learning rate')
parser.add_argument('--learning_rate_min', type=float, default=0.001, help='min learning rate')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('--weight_decay', type=float, default=3e-4, help='weight decay')
parser.add_argument('--report_freq', type=float, default=50, help='report frequency')
parser.add_argument('--gpu', type=int, default=0, help='gpu device id')
parser.add_argument('--epochs', type=int, default=50, help='num of training epochs')
parser.add_argument('--init_channels', type=int, default=16, help='num of init channels')
parser.add_argument('--layers', type=int, default=8, help='total number of layers')
parser.add_argument('--model_path', type=str, default='saved_models', help='path to save the model')
parser.add_argument('--cutout', action='store_true', default=False, help='use cutout')
parser.add_argument('--cutout_length', type=int, default=16, help='cutout length')
parser.add_argument('--drop_path_prob', type=float, default=0.0, help='drop path probability')
parser.add_argument('--save', type=str, default='EXP', help='experiment name')
parser.add_argument('--exp_name', type=str, default='normal-noisy', help='experiment name')
parser.add_argument('--seed', type=int, default=2, help='random seed')
parser.add_argument('--grad_clip', type=float, default=5, help='gradient clipping')
parser.add_argument('--train_portion', type=float, default=0.5, help='portion of training data')
parser.add_argument('--unrolled', action='store_true', default=False, help='use one-step unrolled validation loss')
parser.add_argument('--arch_learning_rate', type=float, default=3e-4, help='learning rate for arch encoding')
parser.add_argument('--arch_weight_decay', type=float, default=1e-3, help='weight decay for arch encoding')
parser.add_argument('--noise_mean', type=float, default=0.0, help='noise mean, shared by skip and pooling')
parser.add_argument('--noise_type', type=str, default='gaussian', choices=['gaussian', 'uniform'], help='noise type')
parser.add_argument('--noise_mixture', type=str, default='additive', choices=['additive', 'multiplicative'], help='noise mixture type')
parser.add_argument('--noise_decay', action='store_true', default=False, help='add noise decay or not')
parser.add_argument('--add_noise_skip', action='store_true', default=False, help='add noise to skip')
parser.add_argument('--factor_skip', type=float, default=0.2, help='noise factor of std to skip')
parser.add_argument('--compute_hessian', action='store_true', default=False, help='compute or not Hessian')
parser.add_argument('--report_freq_hessian', type=int, default=50, help='report frequency hessian')
parser.add_argument('--pretrained_weights', type=str, default=None, help='path to weights')
parser.add_argument('--frozen-epochs', default=0, type=int, help='frozen epochs before alpha update')
args = parser.parse_args()
args.save = 'search-{}-{}'.format(args.exp_name, time.strftime("%Y%m%d"))
utils.create_exp_dir(args.save, scripts_to_save=glob.glob('*.py'))
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(args.save, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
CIFAR_CLASSES = 10
def main():
if not torch.cuda.is_available():
logging.info('no gpu device available, terminating')
sys.exit(0)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.set_device(args.gpu)
cudnn.benchmark = True
cudnn.enabled=True
torch.cuda.manual_seed(args.seed)
logging.info('gpu device = %d' % args.gpu)
logging.info("args = %s", args)
criterion = nn.CrossEntropyLoss()
criterion = criterion.cuda()
model = Network(args.init_channels, CIFAR_CLASSES, args.layers, criterion, args=args)
if torch.cuda.is_available():
model = model.cuda()
logging.info("param size = %fMB", utils.count_parameters_in_MB(model))
# RobustDARTS curvature analyser
analyser = Analyzer(args, model)
optimizer = torch.optim.SGD(
model.parameters(),
args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay)
train_transform, valid_transform = utils._data_transforms_cifar10(args)
train_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=train_transform)
num_train = len(train_data)
indices = list(range(num_train))
split = int(np.floor(args.train_portion * num_train))
train_queue = torch.utils.data.DataLoader(
train_data, batch_size=args.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]),
pin_memory=False)
valid_queue = torch.utils.data.DataLoader(
train_data, batch_size=args.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[split:num_train]),
pin_memory=False)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, float(args.epochs), eta_min=args.learning_rate_min)
if args.pretrained_weights is not None:
utils.load(model, os.path.join(args.pretrained_weights, 'weights.pt'))
# don't load since arch weights are softmaxed
# utils.load_arch_weights(model, args.pretrained_weights)
architect = Architect(model, args)
for epoch in range(args.epochs):
scheduler.step()
lr = scheduler.get_lr()[0]
logging.info('epoch %d lr %e', epoch, lr)
genotype = model.genotype()
logging.info('genotype = %s', genotype)
print(F.softmax(model.alphas_normal, dim=-1), model.alphas_normal)
print(F.softmax(model.alphas_reduce, dim=-1), model.alphas_reduce)
model.update_history()
# training
train_acc, train_obj = train(train_queue, valid_queue, model, architect, criterion, optimizer, lr, epoch, analyser)
logging.info('train_acc %f', train_acc)
# validation
valid_acc, valid_obj = infer(valid_queue, model, criterion, epoch)
logging.info('valid_acc %f', valid_acc)
utils.save(model, os.path.join(args.save, 'weights.pt'))
utils.save_file(recoder=model.alphas_normal_history, path=os.path.join(args.save, 'normal'))
utils.save_file(recoder=model.alphas_reduce_history, path=os.path.join(args.save, 'reduce'))
print('-' * 100)
print('final alphas_normal: \n', F.softmax(model.alphas_normal, dim=-1))
print('final alphas_reduce: \n', F.softmax(model.alphas_reduce, dim=-1))
print('final genotype: \n', model.genotype())
model = NetworkCIFAR(36, CIFAR_CLASSES, 20, True, model.genotype(), args.drop_path_prob)
flops, _ = profile(model, inputs=(torch.randn(1, 3, 32, 32),), verbose=False)
params = utils.count_parameters_in_MB(model)
print('flops: {}, params: {}'.format(flops / 1e6, params))
def train(train_queue, valid_queue, model, architect, criterion, optimizer, lr, epoch, analyser):
objs = utils.AverageMeter()
top1 = utils.AverageMeter()
top5 = utils.AverageMeter()
# import time
def valid_generator():
while True:
for x, t in valid_queue:
yield x, t
valid_gen = valid_generator()
for step, (input, target) in enumerate(train_queue):
model.train()
n = input.size(0)
input = Variable(input, requires_grad=False).cuda(non_blocking=True)
target = Variable(target, requires_grad=False).cuda(non_blocking=True)
# get a random minibatch from the search queue with replacement
# t_0 = time.time()
if epoch >= args.frozen_epochs:
input_search, target_search = next(valid_gen) # next(iter(valid_queue))
# t_1 = time.time()
# print("step %d" % step, " cost: ", t_1 - t_0)
input_search = Variable(input_search, requires_grad=False).cuda(non_blocking=True)
target_search = Variable(target_search, requires_grad=False).cuda(non_blocking=True)
architect.step(input, target, input_search, target_search, lr, optimizer, unrolled=args.unrolled,
epoch=epoch)
optimizer.zero_grad()
logits = model(input, epoch)
loss = criterion(logits, target)
loss.backward()
nn.utils.clip_grad_norm(model.parameters(), args.grad_clip)
optimizer.step()
prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
objs.update(loss.item(), n)
top1.update(prec1.item(), n)
top5.update(prec5.item(), n)
if step % args.report_freq == 0:
logging.info('train %03d %e %f %f', step, objs.avg, top1.avg, top5.avg)
if args.compute_hessian:
if (epoch != 0 and epoch % args.report_freq_hessian == 0) or (epoch == (args.epochs - 1)):
compute_hessian(train_queue, valid_gen, lr, optimizer, analyser, epoch, args)
return top1.avg, objs.avg
def compute_hessian(train_queue, valid_gen, lr, optimizer, analyser, epoch, args):
logging.info(f"Epoch {epoch}: Start RDARTS Eigenvector Calculation...")
_data_loader = deepcopy(train_queue)
_input, target = next(iter(_data_loader))
_input = Variable(_input, requires_grad=False).cuda()
target = Variable(target, requires_grad=False).cuda(async=True)
input_search, target_search = next(valid_gen)
input_search = Variable(input_search, requires_grad=False).cuda(non_blocking=True)
target_search = Variable(target_search, requires_grad=False).cuda(non_blocking=True)
H = analyser.compute_Hw(_input, target, input_search, target_search,
lr, optimizer, False, epoch)
g = analyser.compute_dw(_input, target, input_search, target_search,
lr, optimizer, False, epoch)
g = torch.cat([x.view(-1) for x in g])
del _data_loader
ev = max(LA.eigvals(H.cpu().data.numpy()))
logging.info(f'Epoch {epoch}: CURRENT MAX EV: {ev}')
state = {'epoch': epoch,
'H': H.cpu().data.numpy().tolist(),
'g': g.cpu().data.numpy().tolist(),
#'g_train': float(grad_norm),
#'eig_train': eigenvalue,
}
with codecs.open(os.path.join(args.save,
'derivatives_{}_{}.json'.format(epoch, args.exp_name)),
'a', encoding='utf-8') as file:
json.dump(state, file, separators=(',', ':'))
file.write('\n')
def infer(valid_queue, model, criterion, epoch):
objs = utils.AverageMeter()
top1 = utils.AverageMeter()
top5 = utils.AverageMeter()
model.eval()
with torch.no_grad():
for step, (input, target) in enumerate(valid_queue):
input = Variable(input).cuda(non_blocking=True)
target = Variable(target).cuda(non_blocking=True)
logits = model(input, epoch)
loss = criterion(logits, target)
prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
n = input.size(0)
objs.update(loss.item(), n)
top1.update(prec1.item(), n)
top5.update(prec5.item(), n)
if step % args.report_freq == 0:
logging.info('valid %03d %e %f %f', step, objs.avg, top1.avg, top5.avg)
return top1.avg, objs.avg
if __name__ == '__main__':
main()