-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathverify.py
63 lines (56 loc) · 2.56 KB
/
verify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from __future__ import print_function, division
import os
import argparse
import torch
from models.FairNAS_A import FairNasA
from models.FairNAS_B import FairNasB
from models.FairNAS_C import FairNasC
from dataloader import get_imagenet_dataset
from accuracy import accuracy
parser = argparse.ArgumentParser(description='FairNAS Config')
parser.add_argument('--model', default='FairNAS_A', choices=['FairNAS_A', 'FairNAS_B', 'FairNAS_C'])
parser.add_argument('--device', default='cpu', choices=['cuda', 'cpu'])
parser.add_argument('--val-dataset-root', default='/Your_Root/ILSVRC2012', help="val dataset root path")
parser.add_argument('--pretrained-path', default='./pretrained/FairNasA.pth.tar', help="checkpoint path")
parser.add_argument('--batch-size', default=256, type=int, help='val batch size')
parser.add_argument('--gpu-id', default=0, type=int, help='gpu to run')
args = parser.parse_args()
if __name__ == "__main__":
assert args.model in ['FairNAS_A', 'FairNAS_B', 'FairNAS_C'], "Unknown model name %s" % args.model
if args.device == "cuda":
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_id)
if args.model == "FairNAS_A":
model = FairNasA()
elif args.model == "FairNAS_B":
model = FairNasB()
elif args.model == "FairNAS_C":
model = FairNasC()
device = torch.device(args.device)
pretrained_path = args.pretrained_path
model_dict = torch.load(pretrained_path, map_location=device)
model.load_state_dict(model_dict["model_state"])
if device.type == 'cuda':
model.cuda()
model.eval()
val_dataloader = get_imagenet_dataset(batch_size=args.batch_size,
dataset_root=args.val_dataset_root,
dataset_tpye="valid")
print("Start to evaluate ...")
total_top1 = 0.0
total_top5 = 0.0
total_counter = 0.0
for image, label in val_dataloader:
image, label = image.to(device), label.to(device)
result = model(image)
top1, top5 = accuracy(result, label, topk=(1, 5))
if device.type == 'cuda':
total_counter += image.cpu().data.shape[0]
total_top1 += top1.cpu().data.numpy()
total_top5 += top5.cpu().data.numpy()
else:
total_counter += image.data.shape[0]
total_top1 += top1.data.numpy()
total_top5 += top5.data.numpy()
mean_top1 = total_top1 / total_counter
mean_top5 = total_top5 / total_counter
print('Evaluate Result: Total: %d\tmTop1: %.4f\tmTop5: %.6f' % (total_counter, mean_top1, mean_top5))