-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_ae.py
335 lines (292 loc) · 16.4 KB
/
train_ae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import os
import time
import torch
import argparse
import json
from torch.optim import lr_scheduler
from torch.utils.data import DataLoader
from collections import defaultdict
from dataset.oakink_dataset import Oakink
from dataset.grab_dataset import Grab
from network.autoencoder.autoencoder import Autoencoder
import numpy as np
import random
from utils import utils_loss
from utils.utils import makepath, makelogger , convert_euler_to_rotmat
from utils.loss import CVAE_loss_mano, CMap_loss, CMap_loss1, CMap_loss3, CMap_loss4, inter_penetr_loss, CMap_consistency_loss, set_random_seed,kl_div_normal
from pytorch3d.loss import chamfer_distance
import mano
import ipdb
import sys
from torch.utils.tensorboard import SummaryWriter
from evaluation.vis import vis_hand
from manopth.manolayer import grabManoLayer
from manotorch.manolayer import ManoLayer, MANOOutput
from datetime import datetime
grab_mano_layer = grabManoLayer(ncomps=45, flat_hand_mean=True, side="right", mano_root=os.path.join("assets/mano_v1_2/models"), use_pca=False, joint_rot_mode="rotmat").to("cuda")
def train(args, writer , epoch, model, train_loader, device, optimizer, logger, checkpoint_root ,best_train_loss, rh_mano, rh_faces):
since = time.time()
logs = defaultdict(list)
a, b, c, d, e , f= args.weight
model.train()
for batch_idx, input in enumerate(train_loader):
obj_pc = input["obj_pc"].to(device)
hand_param = input["hand_param"].to(device)
if args.dataset =="oakink":
gt_mano = rh_mano(hand_param[:, 10:58] , hand_param[:,:10])
hand_xyz = gt_mano.verts.to(device) + hand_param[:,None, 58:] # [B,778,3]
else:
th_v_template = input["th_v_template"].to(device)
hand_xyz = input["hand_verts"].to(device)
optimizer.zero_grad()
'''encoder'''
hand_feature, _, _ = model.hand_encoder(hand_xyz.permute(0,2,1))
# pointnet
z = model.encoder(hand_feature)
recon_param = model.decoder(z)
if args.dataset =="oakink":
recon_mano = rh_mano(recon_param[:, 10:58] , recon_param[:,:10])
recon_xyz = recon_mano.verts.to(device) + recon_param[:,None, 58:] # [B,778,3]
else:
handbetas = hand_param[:, :10 ]
handeuler = recon_param[:, 10:58].view(-1,16,3) # [ B , 16 , 3 ]
handrot = convert_euler_to_rotmat(handeuler)# [ B , 16 , 3 , 3]
th_trans =recon_param[:, 58:] # [ B , 3]
hand_verts_list = []
for k , x in enumerate(handrot):
hand_vert, _ ,_= grab_mano_layer(handrot[k].unsqueeze(0).to(device),th_betas=handbetas[k].unsqueeze(0).to(device), th_trans=th_trans[k].unsqueeze(0).to(device), th_v_template=th_v_template[k].unsqueeze(0))
hand_verts_list.append(hand_vert)
recon_xyz = torch.stack(hand_verts_list).squeeze(1)
# obj xyz NN dist and idx
obj_nn_dist_gt, obj_nn_idx_gt = utils_loss.get_NN(obj_pc.permute(0,2,1)[:,:,:3], hand_xyz)
obj_nn_dist_recon, obj_nn_idx_recon = utils_loss.get_NN(obj_pc.permute(0, 2, 1)[:, :, :3], recon_xyz)
# mano param loss
param_loss = torch.nn.functional.mse_loss(recon_param, hand_param, reduction='none').sum() / recon_param.size(0)
# mano recon xyz loss, KLD loss
recon_loss_num, _ = chamfer_distance(recon_xyz, hand_xyz, point_reduction='sum', batch_reduction='mean')
#cmap_loss = CMap_loss(obj_pc.permute(0,2,1)[:,:,:3], recon_xyz, obj_cmap)
cmap_loss = CMap_loss3(obj_pc.permute(0,2,1)[:,:,:3], recon_xyz, obj_nn_dist_recon < 0.01**2)
# cmap consistency loss
consistency_loss = CMap_consistency_loss(obj_pc.permute(0,2,1)[:,:,:3], recon_xyz, hand_xyz,
obj_nn_dist_recon, obj_nn_dist_gt)
# inter penetration loss
rh_face = rh_faces[0]
rh_faces = rh_face.expand(recon_xyz.shape[0], -1, -1) # align the B
penetr_loss =inter_penetr_loss(recon_xyz, rh_faces, obj_pc.permute(0,2,1)[:,:,:3],
obj_nn_dist_recon, obj_nn_idx_recon)
kl_loss = kl_div_normal(z)
if epoch >= 5:
loss = a * recon_loss_num + b * param_loss + c * cmap_loss + d * penetr_loss + e * consistency_loss + f * kl_loss
else:
loss = a * recon_loss_num + b * param_loss + d * penetr_loss + e * consistency_loss + f * kl_loss
loss.backward()
optimizer.step()
logs['recon_loss'].append(recon_loss_num)
logs['loss'].append(loss.item())
logs['param_loss'].append(param_loss.item())
logs['cmap_loss'].append(cmap_loss.item())
logs['penetr_loss'].append(penetr_loss.item())
logs['cmap_consistency'].append(consistency_loss.item())
logs['kl_loss'].append(kl_loss.item())
writer.add_scalar('loss', sum(logs['loss']) / len(logs['loss']) , epoch)
writer.add_scalar('recon_loss', sum(logs['recon_loss']) / len(logs['recon_loss']) , epoch)
writer.add_scalar('param_loss', sum(logs['param_loss']) / len(logs['param_loss']) , epoch)
writer.add_scalar('cmap_loss', sum(logs['cmap_loss']) / len(logs['cmap_loss']) , epoch)
writer.add_scalar('penetr_loss', sum(logs['penetr_loss']) / len(logs['penetr_loss']), epoch)
writer.add_scalar('cmap_consistency', sum(logs['cmap_consistency']) / len(logs['cmap_consistency']) , epoch)
writer.add_scalar('kl_loss', sum(logs['kl_loss']) / len(logs['kl_loss']) , epoch)
mean_recon_loss = sum(logs['param_loss']) / len(logs['param_loss'])
out_str = "Epoch: {:02d}/{:02d}, train, Mean Toal Loss {:9.5f}, Mesh {:9.5f}, Param {:9.5f}, CMap {:9.5f}, Consistency {:9.5f}, Penetration {:9.5f} , KL {:9.5f} , Best param-loss: {:9.5f}".format(
epoch, args.epochs,
sum(logs['loss']) / len(logs['loss']),
sum(logs['recon_loss']) / len(logs['recon_loss']),
sum(logs['param_loss']) / len(logs['param_loss']),
sum(logs['cmap_loss']) / len(logs['cmap_loss']),
sum(logs['cmap_consistency']) / len(logs['cmap_consistency']),
sum(logs['penetr_loss']) / len(logs['penetr_loss']),
sum(logs['kl_loss']) / len(logs['kl_loss']),
min(best_train_loss, mean_recon_loss)
)
logger(out_str)
if mean_recon_loss < best_train_loss :
save_name = os.path.join(checkpoint_root, 'model_best_train.pth')
torch.save({
'network': model.state_dict(),
'epoch': epoch
}, save_name)
return min(mean_recon_loss , best_train_loss)
def val(args,writer, epoch, model, val_loader, device,logger, checkpoint_root, best_val_loss, rh_mano, rh_faces, mode='val'):
# validation
model.eval()
a, b, c, d, e ,f = args.weight
logs = defaultdict(list)
with torch.no_grad():
for batch_idx, input in enumerate(val_loader):
obj_pc = input["obj_pc"].to(device)
hand_param = input["hand_param"].to(device)
if args.dataset =="oakink":
gt_mano = rh_mano(hand_param[:, 10:58] , hand_param[:,:10])
hand_xyz = gt_mano.verts.to(device) + hand_param[:,None, 58:] # [B,778,3]
else:
th_v_template = input["th_v_template"].to(device)
hand_xyz = input["hand_verts"].to(device)
hand_feature, _, _ = model.hand_encoder(hand_xyz.permute(0,2,1))
# pointnet
z = model.encoder(hand_feature)
recon_param = model.decoder(z)
if args.dataset == 'oakink':
recon_mano = rh_mano(recon_param[:, 10:58] , recon_param[:,:10])
recon_xyz = recon_mano.verts.to(device) + recon_param[:,None, 58:] # [B,778,3]
else:
handbetas = hand_param[:,:10]
handeuler = recon_param[:, 10:58].view(-1,16,3) # [ B , 16 , 3 ]
handrot = convert_euler_to_rotmat(handeuler)# [ B , 16 , 3 , 3]
th_trans =recon_param[:, 58:] # [ B , 3]
hand_verts_list = []
for k , x in enumerate(handrot):
hand_vert, _ ,_= grab_mano_layer(handrot[k].unsqueeze(0).to(device),th_betas=handbetas[k].unsqueeze(0).to(device), th_trans=th_trans[k].unsqueeze(0).to(device), th_v_template=th_v_template[k].unsqueeze(0))
hand_verts_list.append(hand_vert)
recon_xyz = torch.stack(hand_verts_list).squeeze(1)
obj_nn_dist_gt, obj_nn_idx_gt = utils_loss.get_NN(obj_pc.permute(0,2,1)[:,:,:3], hand_xyz)
obj_nn_dist_recon, obj_nn_idx_recon = utils_loss.get_NN(obj_pc.permute(0, 2, 1)[:, :, :3], recon_xyz)
# mano param loss
param_loss = torch.nn.functional.mse_loss(recon_param, hand_param, reduction='none').sum() / recon_param.size(0)
recon_loss_num, _ = chamfer_distance(recon_xyz, hand_xyz, point_reduction='sum', batch_reduction='mean')
cmap_loss = CMap_loss3(obj_pc.permute(0,2,1)[:,:,:3], recon_xyz, obj_nn_dist_recon < 0.01**2)
consistency_loss = CMap_consistency_loss(obj_pc.permute(0,2,1)[:,:,:3], recon_xyz, hand_xyz,
obj_nn_dist_recon, obj_nn_dist_gt)
# inter penetration loss
rh_face = rh_faces[0]
rh_faces = rh_face.expand(recon_xyz.shape[0], -1, -1) # align the B
penetr_loss =inter_penetr_loss(recon_xyz, rh_faces, obj_pc.permute(0,2,1)[:,:,:3],obj_nn_dist_recon, obj_nn_idx_recon)
kl_loss = kl_div_normal(z)
if epoch >= 5:
loss = a * recon_loss_num + b * param_loss + c * cmap_loss + d * penetr_loss + e * consistency_loss + f * kl_loss
else:
loss = a * recon_loss_num + b * param_loss + d * penetr_loss + e * consistency_loss + f * kl_loss
logs['recon_loss'].append(recon_loss_num)
logs['loss'].append(loss.item())
logs['param_loss'].append(param_loss.item())
logs['cmap_loss'].append(cmap_loss.item())
logs['penetr_loss'].append(penetr_loss.item())
logs['cmap_consistency'].append(consistency_loss.item())
logs['kl_loss'].append(kl_loss.item())
writer.add_scalar('loss', sum(logs['loss']) / len(logs['loss']) , epoch)
writer.add_scalar('recon_loss', sum(logs['recon_loss']) / len(logs['recon_loss']) , epoch)
writer.add_scalar('param_loss', sum(logs['param_loss']) / len(logs['param_loss']) , epoch)
writer.add_scalar('cmap_loss', sum(logs['cmap_loss']) / len(logs['cmap_loss']) , epoch)
writer.add_scalar('penetr_loss', sum(logs['penetr_loss']) / len(logs['penetr_loss']), epoch)
writer.add_scalar('cmap_consistency', sum(logs['cmap_consistency']) / len(logs['cmap_consistency']) , epoch)
writer.add_scalar('kl_loss', sum(logs['kl_loss']) / len(logs['kl_loss']) , epoch)
val_loss = sum(logs['param_loss']) / len(logs['param_loss'])
out_str = "Epoch: {:02d}/{:02d}, {} , Mean Toal Loss {:9.5f}, Mesh {:9.5f}, Param {:9.5f}, CMap {:9.5f}, Consistency {:9.5f}, Penetration {:9.5f} , KL {:9.5f} , Best param-loss: {:9.5f}".format(
epoch, args.epochs,mode,
sum(logs['loss']) / len(logs['loss']),
sum(logs['recon_loss']) / len(logs['recon_loss']),
sum(logs['param_loss']) / len(logs['param_loss']),
sum(logs['cmap_loss']) / len(logs['cmap_loss']),
sum(logs['cmap_consistency']) / len(logs['cmap_consistency']),
sum(logs['penetr_loss']) / len(logs['penetr_loss']),
sum(logs['kl_loss']) / len(logs['kl_loss']),
min(best_val_loss, val_loss)
)
logger(out_str)
if val_loss < best_val_loss:
save_name = os.path.join(checkpoint_root, 'model_best_{}.pth'.format(mode))
torch.save({
'network': model.state_dict(),
'epoch': epoch
}, save_name)
return min(best_val_loss, val_loss)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, help='Path to the JSON config file')
args = parser.parse_args()
with open(args.config, 'r') as configfile:
config = json.load(configfile)
for key, value in config.items():
parser.add_argument(f'--{key}', type=type(value), default=value)
args = parser.parse_args()
# log file
save_root = os.path.join('./logs', f"autoencoder/{args.dataset}/{args.file_name}" )
if not os.path.exists(save_root):
os.makedirs(save_root)
log_root = save_root + '/exp.log'
# logger
logger = makelogger(makepath(os.path.join(log_root), isfile=True)).info
starttime = datetime.now().replace(microsecond=0)
logger('Started training %s' % (starttime))
gpu_brand = torch.cuda.get_device_name(0) if args.use_cuda else None
if args.use_cuda and torch.cuda.is_available():
logger('Using 1 CUDA cores [%s] for training!' % (gpu_brand))
logger(args)
logger(args.weight)
# seed
set_random_seed(args.seed)
# device
use_cuda = args.use_cuda and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
device_num = 1
model = Autoencoder(
args = args,
obj_inchannel=args.obj_inchannel,
cvae_encoder_sizes=args.encoder_layer_sizes,
cvae_decoder_sizes=args.decoder_layer_sizes).to(device)
# multi-gpu
if device == torch.device("cuda"):
device_ids = range(torch.cuda.device_count())
if len(device_ids) > 1:
model = torch.nn.DataParallel(model)
device_num = len(device_ids)
# dataset
if 'Train' in args.train_mode:
if args.dataset =="oakink":
train_dataset = Oakink(mode="train", batch_size=args.batch_size , args = args)
else:
train_dataset = Grab(mode="train", batch_size=args.batch_size , args = args , aug_ratio = args.aug_ratio)
train_loader = DataLoader(dataset=train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.dataloader_workers,drop_last=True )
if 'Val' in args.train_mode:
if args.dataset =="oakink":
val_dataset = Oakink(mode="val", batch_size=args.batch_size , args = args)
else:
val_dataset = Grab(mode="val", batch_size=args.batch_size , args = args)
val_loader = DataLoader(dataset=val_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.dataloader_workers)
if 'Test' in args.train_mode:
if args.dataset =="oakink":
eval_dataset = Oakink(mode="test", batch_size=args.batch_size , args = args)
else:
eval_dataset = Grab(mode="test", batch_size=args.batch_size , args = args)
eval_loader = DataLoader(dataset=eval_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.dataloader_workers)
# optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[round(args.epochs * x) for x in [0.1, 0.2, 0.3, 0.5]], gamma=0.5)
train_writer = SummaryWriter(os.path.join(
os.path.dirname(log_root), 'tensorboard/train'))
val_writer = SummaryWriter(os.path.join(
os.path.dirname(log_root), 'tensorboard/val'))
test_writer = SummaryWriter(os.path.join(
os.path.dirname(log_root), 'tensorboard/test'))
# mano hand model
with torch.no_grad():
rh_mano = ManoLayer(
center_idx=0, mano_assets_root="assets/mano_v1_2").to(device)
# [1, 1538, 3], face triangle indexes
rh_faces = rh_mano.th_faces.view(1, -1, 3).contiguous()
rh_faces = rh_faces.repeat(args.batch_size, 1, 1).to(device) # [N, 1538, 3]
best_train_loss = float('inf')
best_val_loss = float('inf')
best_eval_loss = float('inf')
for epoch in range(1, args.epochs+1):
if 'Train' in args.train_mode:
best_train_loss = train(args, train_writer, epoch, model, train_loader,
device, optimizer, logger, save_root, best_train_loss, rh_mano, rh_faces,)
scheduler.step()
if 'Val' in args.train_mode:
best_val_loss = val(args, val_writer, epoch, model, val_loader,
device, logger, save_root, best_val_loss, rh_mano, rh_faces, 'val')
if 'Test' in args.train_mode:
best_eval_loss = val(args, test_writer, epoch, model, eval_loader,
device, logger, save_root, best_eval_loss, rh_mano, rh_faces, 'test')