-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval_ae.py
202 lines (176 loc) · 9.21 KB
/
eval_ae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import os
import time
import torch
import argparse
import json
from torch.optim import lr_scheduler
from torch.utils.data import DataLoader
from collections import defaultdict
from dataset.dataset_eval import Oakink ,Grab
from network.autoencoder.autoencoder import Autoencoder
import numpy as np
import random
from utils import utils_loss
from utils.utils import convert_euler_to_rotmat
from utils.loss import CVAE_loss_mano, CMap_loss, CMap_loss1, CMap_loss3, CMap_loss4, inter_penetr_loss, CMap_consistency_loss, set_random_seed
from pytorch3d.loss import chamfer_distance
import mano
import statistics
# from manotorch.manolayer import ManoLayer, MANOOutput
from evaluation.displacement import grasp_displacement ,diversity
from evaluation.vis import vis_dataset
from tqdm import tqdm
import ipdb
from manotorch.manolayer import ManoLayer, MANOOutput
from manopth.manolayer import grabManoLayer
grab_mano_layer = grabManoLayer(ncomps=45, flat_hand_mean=True, side="right", mano_root=os.path.join("assets/mano_v1_2/models"), use_pca=False, joint_rot_mode="rotmat").to("cuda")
# grab_mano_layer = grabManoLayer(ncomps=45, flat_hand_mean=True, side="right", mano_root=os.path.join("assets/mano_v1_2/models"), use_pca=False, joint_rot_mode="axisang").to("cuda")
def val(args, model, val_loader, device, rh_mano, rh_faces, mode='val'):
# validation
cluster = []
model.eval()
simulation_displacements_list = [] # std
penetration_distances_list = []
intersection_volumes_list = []
'''accelerate evaluation '''
obj_face_list = []
obj_vert_list = []
hand_out_list = []
hand_face_list = []
model_path = f"{os.path.dirname(args.model_path)}"
ply_path = model_path +f"/ply_{args.dataset}"
if not os.path.exists(ply_path):
os.makedirs(ply_path)
eval_path = model_path +f"/eval_{args.dataset}/"
if not os.path.exists(eval_path):
os.makedirs(eval_path)
with torch.no_grad():
for batch_idx, input in enumerate(tqdm(val_loader)):
obj_pc = input["obj_pc"].to(device)
hand_param = input["hand_param"].to(device)
obj_face = input["obj_face"]
obj_vert = input["obj_vert"]
if args.dataset =="oakink":
gt_mano = rh_mano(hand_param[:, 10:58] , hand_param[:,:10])
gt_hand = gt_mano.verts.to(device) + hand_param[:,None, 58:] # [B,778,3]
else:
th_v_template = input["th_v_template"].to(device)
gt_hand = input["hand_verts"].to(device)
hand_faces = input["hand_faces"].squeeze(0)
'''autoencoder'''
recon_param = model(gt_hand.permute(0,2,1)) # recon [B,61] mano params
if args.mano =="grab":
handbetas = hand_param[:,:10]
handeuler = recon_param[:, 10:58].view(-1,16,3) # [ B , 16 , 3 ]
handrot = convert_euler_to_rotmat(handeuler)# [ B , 16 , 3 , 3]
th_trans =recon_param[:, 58:] # [ B , 3]
hand_verts, _ ,_= grab_mano_layer(handrot[0].unsqueeze(0).to(device),th_betas=handbetas[0].unsqueeze(0).to(device), th_trans=th_trans[0].unsqueeze(0).to(device), th_v_template=th_v_template[0].unsqueeze(0))
hand_faces = grab_mano_layer.th_faces
if batch_idx <= 300 or (batch_idx % 477 == 0):
vis_dataset(obj_face , obj_vert, hand_verts.to("cpu"), hand_faces.to("cpu") , f"{ply_path}/{batch_idx}.ply")
elif args.mano =="oakink":
recon_mano = rh_mano(recon_param[:, 10:58] , recon_param[:,:10])
hand_verts = recon_mano.verts.to(device) + recon_param[:,None, 58:] # [B,778,3]
hand_faces = rh_mano.th_faces
if batch_idx <= 300 or (batch_idx % 477 == 0):
vis_dataset(obj_face , obj_vert, hand_verts.to("cpu"), hand_faces.to("cpu") , f"{ply_path}/{batch_idx}.ply")
cluster.append(recon_param.squeeze(0).cpu().numpy())
''''simulation_displacement , penetration_distance , intersection_volume '''
if batch_idx % 256 == 0 and batch_idx != 0:
simulation_displacement , penetration_distance , intersection_volume = grasp_displacement(obj_face_list , obj_vert_list,hand_out_list, hand_face_list , "")
simulation_displacements_list += simulation_displacement
penetration_distances_list += penetration_distance
intersection_volumes_list += intersection_volume
obj_face_list.clear()
obj_vert_list.clear()
hand_out_list.clear()
hand_face_list.clear()
obj_face_list.append(obj_face.squeeze(0))
obj_vert_list.append(obj_vert.squeeze(0))
hand_out_list.append(hand_verts.squeeze(0))
hand_face_list.append(hand_faces)
cluster_array = np.array(cluster)
entropy, cluster_size = diversity(cluster_array, cls_num=20)
# np.save("baseline_train_train_hand.npy", cluster_array)
'''maybe datalen % 16 != 0 ,so deal it'''
simulation_displacement , penetration_distance , intersection_volume = grasp_displacement(obj_face_list , obj_vert_list,hand_out_list, hand_face_list , "")
simulation_displacements_list += simulation_displacement
penetration_distances_list += penetration_distance
intersection_volumes_list += intersection_volume
std_simulation_displacement = statistics.stdev(simulation_displacements_list)
mean_simulation_displacement = sum(simulation_displacements_list) / len(simulation_displacements_list)
mean_penetration_distance = sum(penetration_distances_list) / len(penetration_distances_list)
mean_intersection_volume = sum(intersection_volumes_list) / len(intersection_volumes_list)
contact_ratio= np.mean(np.array(intersection_volumes_list) != 0)
with open(eval_path+f"val.txt", "w", encoding="utf-8") as file:
print(f"mean_simulation_displacement : {mean_simulation_displacement * 1e2:.4f}e-02\n"
f"std_simulation_displacement : {std_simulation_displacement * 1e2:.4f}e-02\n"
f"mean_penetration_distance : {mean_penetration_distance * 1e2:.4f}e-02\n"
f"mean_intersection_volume : {mean_intersection_volume * 1e6:.4f}e-06\n"
f"contact_ratio : {contact_ratio * 1e2 :.4f}e-02\n"
f" entropy :, {entropy} \n"
f"cluster_size : {cluster_size}",file=file)
print(f"mean_simulation_displacement : {mean_simulation_displacement * 1e2:.4f}e-02\n"
f"std_simulation_displacement : {std_simulation_displacement * 1e2:.4f}e-02\n"
f"mean_penetration_distance : {mean_penetration_distance * 1e2:.4f}e-02\n"
f"mean_intersection_volume : {mean_intersection_volume * 1e6:.4f}e-06\n"
f"contact_ratio : {contact_ratio * 1e2 :.4f}e-02\n"
f" entropy :, {entropy} \n"
f"cluster_size : {cluster_size}")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, help='Path to the JSON config file')
args = parser.parse_args()
with open(args.config, 'r') as configfile:
config = json.load(configfile)
for key, value in config.items():
parser.add_argument(f'--{key}', type=type(value), default=value)
args = parser.parse_args()
# seed
set_random_seed(args.seed)
# device
use_cuda = args.use_cuda and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
print("using device", device)
device_num = 1
model = Autoencoder(
args = args,
obj_inchannel=args.obj_inchannel,
cvae_encoder_sizes=args.encoder_layer_sizes,
cvae_decoder_sizes=args.decoder_layer_sizes).to(device)
# network
checkpoint = torch.load(args.model_path, map_location=torch.device(device))
new_state_dict = {}
for key, value in checkpoint['network'].items():
if key.startswith('module.'):
new_key = key[7:] # 去除前缀
else:
new_key = key
new_state_dict[new_key] = value
model.load_state_dict(new_state_dict)
model = model.to(device)
# multi-gpu
if device == torch.device("cuda"):
torch.backends.cudnn.benchmark = True
device_ids = range(torch.cuda.device_count())
print("using {} cuda".format(len(device_ids)))
if len(device_ids) > 1:
model = torch.nn.DataParallel(model)
device_num = len(device_ids)
if 'Test' in args.train_mode:
if args.dataset =="oakink":
eval_dataset = Oakink(mode="test", batch_size=args.batch_size , args = args)
else:
eval_dataset = Grab(mode="test", batch_size=args.batch_size , args = args)
eval_loader = DataLoader(dataset=eval_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.dataloader_workers)
# mano hand model
print(args.model_path)
with torch.no_grad():
rh_mano = ManoLayer(center_idx=0, mano_assets_root="assets/mano_v1_2").to(device)
rh_faces = rh_mano.th_faces.view(1, -1, 3).contiguous() # [1, 1538, 3], face triangle indexes
rh_faces = rh_faces.repeat(args.batch_size, 1, 1).to(device) # [N, 1538, 3]
if 'Test' in args.train_mode:
val(args, model, eval_loader, device, rh_mano, rh_faces, 'test')
else:
print("no dataset!")