forked from faturita/python-scientific
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathonepasspython.py
419 lines (335 loc) · 12 KB
/
onepasspython.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
"""
==================
One Pass Python
==================
This is based on: http://cs231n.github.io/python-numpy-tutorial/
Python 101: indentation determine blocks in python.
"""
print(__doc__)
# In[1]: This comment allows Visual Studio Code to identify blocks that can be sent to a jupyter console.
print('Modularity comes from functions')
def f(x=0):
print('El valor es %2d' % x)
return 4
variable = f()
# In[1]
print('Tuples are immutable objects')
nested_tup = (4,5,6,(7,8))
totuple = tuple('string')
print(totuple)
print ('Tuples are handy for assignments')
tup = (4,5,6)
a,b,c = tup
print('Swap')
a,b = 1,2
a,b = b,a
seq = [(1,2,3),(4,5,6),(7,8,9)]
for a,b,c in seq:
print('a={0}, b={1}, c={2}'.format(a,b,c))
print('Python3 allows to use typles as varargs parameters')
values = 1,2,3,4,5
a,b, *rest = values
print (a,b)
print ( rest )
# In[1]:
print ('Format shape')
a=3
print ('AT'+'{:3d}'.format(a))
print ('AT %3d' % a)
print ('Tuple %3d %3d' % (2,3))
# In[1]:
print('Basic arithmetic operations')
x = 3
print(type(x)) # Prints "<class 'int'>"
print(x) # Prints "3"
print(x + 1) # Addition; prints "4"
print(x - 1) # Subtraction; prints "2"
print(x * 2) # Multiplication; prints "6"
print(x ** 2) # Exponentiation; prints "9"
x += 1
print(x) # Prints "4"
x *= 2
print(x) # Prints "8"
y = 2.5
print(type(y)) # Prints "<class 'float'>"
print(y, y + 1, y * 2, y ** 2) # Prints "2.5 3.5 5.0 6.25"
# In[1]:
print('Logical operators')
t = True
f = False
print(type(t)) # Prints "<class 'bool'>"
print(t and f) # Logical AND; prints "False"
print(t or f) # Logical OR; prints "True"
print(not t) # Logical NOT; prints "False"
print(t != f) # Logical XOR; prints "True"
# In[1]:
print('Python strings....')
hello = 'hello' # String literals can use single quotes
world = "world" # or double quotes; it does not matter.
print(hello) # Prints "hello"
print(len(hello)) # String length; prints "5"
hw = hello + ' ' + world # String concatenation
print(hw) # prints "hello world"
hw12 = '%s %s %d' % (hello, world, 12) # sprintf style string formatting
print(hw12) # prints "hello world 12"
print (hw[0:1]) # Strings allow some slicing
print (hw[0:-1])
# In[1]:
print('String objects.')
s = "hello"
print(s.capitalize()) # Capitalize a string; prints "Hello"
print(s.upper()) # Convert a string to uppercase; prints "HELLO"
print(s.rjust(7)) # Right-justify a string, padding with spaces; prints " hello"
print(s.center(7)) # Center a string, padding with spaces; prints " hello "
print(s.replace('l', '(ell)')) # Replace all instances of one substring with another;
# prints "he(ell)(ell)o"
print(' world '.strip()) # Strip leading and trailing whitespace; prints "world"
#https://docs.scipy.org/doc/numpy-1.12.0/reference/routines.sort.html
# In[1]:
print('Python contain four built-in data structures:lists, containers, sets, and tuples')
print('Lists can be handled as dynamic vectors with heterogeneous elements.')
xs = [3, 1, 2] # Create a list
print(xs, xs[2]) # Prints "[3, 1, 2] 2"
print(xs[-1]) # Negative indices count from the end of the list; prints "2"
xs[2] = 'foo' # Lists can contain elements of different types
print(xs) # Prints "[3, 1, 'foo']"
xs.append('bar') # Add a new element to the end of the list
print(xs) # Prints "[3, 1, 'foo', 'bar']"
x = xs.pop() # Remove and return the last element of the list
print(x, xs) # Prints "bar [3, 1, 'foo']"
print(1 in xs) # Check if 1 is in list
# In[1]:
print('Python list can be heterogenous.')
x = [4, None, 'foo']
x.extend([7,8,(2,3)])
print(x)
# In[1]:
print('Slicing.')
nums = list(range(5)) # range is a built-in function that creates an object that represent a list of integer. List convert that to a python list.
print(nums) # Prints "[0, 1, 2, 3, 4]"
print(nums[2:4]) # Get a slice from index 2 to 4 (exclusive); prints "[2, 3]"
print(nums[2:]) # Get a slice from index 2 to the end; prints "[2, 3, 4]"
print(nums[:2]) # Get a slice from the start to index 2 (exclusive); prints "[0, 1]"
print(nums[:]) # Get a slice of the whole list; prints "[0, 1, 2, 3, 4]"
print(nums[:-1]) # Slice indices can be negative; prints "[0, 1, 2, 3]"
nums[2:4] = [8, 9] # Assign a new sublist to a slice
print(nums) # Prints "[0, 1, 8, 9, 4]"
for i, value in enumerate(nums): # Enumerate built-in
print('Postion {0}, Value {1}'.format(i,value))
slist = ['foo','bar','baz'] # Build an indexed dictionary
mapping = {}
for i,v in enumerate(slist):
mapping[v] = i
print(mapping)
# In[1]:
seq1 = ['foo','bar','baz']
seq2 = ['one','two','three']
zipped = zip(seq1,seq2)
ll = list(zipped)
print(ll)
# In[1]:
print('Looping over elements in a list...')
animals = ['cat', 'dog', 'monkey']
for animal in animals:
print(animal)
# Prints "cat", "dog", "monkey", each on its own line.
# In[1]:
animals = ['cat', 'dog', 'monkey']
for idx, animal in enumerate(animals):
print('#%d: %s' % (idx + 1, animal))
# Prints "#1: cat", "#2: dog", "#3: monkey", each on its own line
# In[1]:
print('List comprehensions are lambdas over lists.')
nums = [0, 1, 2, 3, 4]
squares = []
for x in nums:
squares.append(x ** 2)
print(squares) # Prints [0, 1, 4, 9, 16]
nums = [0, 1, 2, 3, 4]
squares = [x ** 2 for x in nums]
print(squares) # Prints [0, 1, 4, 9, 16]
strings = ['a','as','bat','car','dove','python']
print ( [x.upper() for x in strings if len(x)>2])
# In[1]:
print('They can also contain conditions...')
nums = [0, 1, 2, 3, 4]
even_squares = [x ** 2 for x in nums if x % 2 == 0]
print(even_squares) # Prints "[0, 4, 16]"
# In[1]:
print('Dictionaries are hashtables.')
d = {'cat': 'cute', 'dog': 'furry'} # Create a new dictionary with some data
print(d['cat']) # Get an entry from a dictionary; prints "cute"
print('cat' in d) # Check if a dictionary has a given key; prints "True"
d['fish'] = 'wet' # Set an entry in a dictionary
print(d['fish']) # Prints "wet"
# print(d['monkey']) # KeyError: 'monkey' not a key of d
print(d.get('monkey', 'N/A')) # Get an element with a default; prints "N/A"
print(d.get('fish', 'N/A')) # Get an element with a default; prints "wet"
del d['fish'] # Remove an element from a dictionary
print(d.get('fish', 'N/A')) # "fish" is no longer a key; prints "N/A"
mapping = dict(zip(range(5),reversed(range(5))))
# In[1]:
print('Dictionary items can be iterable.')
d = {'person': 2, 'cat': 4, 'spider': 8}
for animal in d:
legs = d[animal]
print('A %s has %d legs' % (animal, legs))
# Prints "A person has 2 legs", "A cat has 4 legs", "A spider has 8 legs"
# In[1]:
d = {'person': 2, 'cat': 4, 'spider': 8}
for animal, legs in d.items():
print('A %s has %d legs' % (animal, legs))
# Prints "A person has 2 legs", "A cat has 4 legs", "A spider has 8 legs"
# In[1]:
print('Build a dictionary based on a list and lambda function.')
nums = [0, 1, 2, 3, 4]
even_num_to_square = {x: x ** 2 for x in nums if x % 2 == 0}
print(even_num_to_square) # Prints "{0: 0, 2: 4, 4: 16}"
# In[1]:
# Sets are lists without order
print('Sets are unordered list of elements.')
animals = {'cat', 'dog'}
print('cat' in animals) # Check if an element is in a set; prints "True"
print('fish' in animals) # prints "False"
animals.add('fish') # Add an element to a set
print('fish' in animals) # Prints "True"
print(len(animals)) # Number of elements in a set; prints "3"
animals.add('cat') # Adding an element that is already in the set does nothing
print(len(animals)) # Prints "3"
animals.remove('cat') # Remove an element from a set
print(len(animals)) # Prints "2"
# In[1]:
print('Creates a set from a list of numbers generated by a lambda.')
from math import sqrt
nums = {int(sqrt(x)) for x in range(30)}
print(nums) # Prints "{0, 1, 2, 3, 4, 5}"
nnums = [int(sqrt(x)) for x in range(30) ]
print (nnums)
import numpy as np
nnums = np.unique(nnums)
print(nnums)
# In[1]:
print('Lambdas are anonymous functions...')
strings = ['foo','card','bar','aaaa','abab']
strings.sort(key=lambda x:len(set(list(x))))
print(strings)
# In[1]:
print('Haskell Currying')
from functools import partial
def add_numbers(x,y):
return x+y
add_five = lambda y: add_numbers(5,y)
# In[1]:
print('Generators: functions that lazily return values.')
def _make_gen():
for x in range(100):
yield x ** 2 # Yield implies that this is a generator
gen = _make_gen()
for x in gen:
print (x, end=' ')
gen = (x ** 2 for x in range(100))
for x in gen:
print(x, end=' ')
# In[1]:
print('Built in iterators')
import itertools
first_letter = lambda x: x[0]
names = ['Alan','Adam', 'Wes', 'Will', 'Albert', 'Steven']
for letter, names in itertools.groupby(names, first_letter):
print(letter, list(names)) # Names is a generator
# In[1]:
print('Tuples are like un-indexed lists and they can be used as element key')
print('Tuples are inmutable objects, like constants, they do not support item assignment.')
print('They are like inmutable C structs.')
d = {(x, x + 1): x for x in range(10)} # Create a dictionary with tuple keys
t = (5, 6) # Create a tuple
print(type(t)) # Prints "<class 'tuple'>"
print(d)
print(d[t]) # Prints "5"
print(d[(1, 2)]) # Prints "1"
# In[1]:
print('Default values in functions')
def helloguys(name='Joe Doe', loud=False):
if loud:
print('HELLO, %s!' % name.upper())
else:
print('Hello, %s' % name)
helloguys('Bob') # Prints "Hello, Bob"
helloguys('Jenny', loud=True) # Prints "HELLO, FRED!"
# In[1]:
import re
def remove_punctuation(value):
return re.sub('[!#?]','',value)
clean_ops = [str.strip, remove_punctuation, str.title]
def clean_strings(strings, ops):
result = []
for value in strings:
for function in ops:
value = function(value)
result.append(value)
return result
states = ['Jujuy','Salta','Chaco##','CorriEntes?','Buenos#Aires']
clean_strings(states, clean_ops) # Functions are used as variables (first class citizens)
# In[1]:
print('Objects')
class Greeter(object):
# Constructor
def __init__(self, name):
self.name = name # Create an instance variable
# Instance method
def greet(self, loud=False):
if loud:
print('HELLO, %s!' % self.name.upper())
else:
print('Hello, %s' % self.name)
g = Greeter('Fred') # Construct an instance of the Greeter class
g.greet() # Call an instance method; prints "Hello, Fred"
g.greet(loud=True) # Call an instance method; prints "HELLO, FRED!"
# In[1]:
print('Check python system configuration.')
import sys
print ('Input line parameters')
print (sys.argv)
print ('Byte order:'+str(sys.byteorder))
print (sys.exec_prefix)
print (sys.executable)
print (sys.path)
print (sys.version_info)
print (sys.platform)
print (sys.argv[0])
print ('Modules =======')
print (sys.modules)
# In[1]:
print('Sets structures check for existence so they can use to identify duplicates.')
def unique(elements):
if len(elements)==len(set(elements)):
print("All elements are unique")
else:
print("List has duplicates")
unique([1,2,3,4,5]) # All elements are unique
unique([1,1,2,3,4,5]) # No
# In[1]:
print('Getting the histogram of elements.')
from collections import Counter
elements = [1, 2, 3, 2, 4, 3, 2, 3]
count = Counter(elements)
print(count) # {2: 3, 3: 3, 1: 1, 4: 1}
# In[1]:
print('Getting the most frequent element.')
def most_frequent(elements):
return max(set(elements), key = elements.count)
numbers = [1, 2, 3, 2, 4, 3, 1, 3]
most_frequent(numbers) # 3
# In[1]:
print('Recursion.')
def quicksort(arr):
if len(arr) <= 1:
return arr
pivot = arr[len(arr) // 2]
left = [x for x in arr if x < pivot]
middle = [x for x in arr if x == pivot]
right = [x for x in arr if x > pivot]
return quicksort(left) + middle + quicksort(right)
print ('Quicksort es un algoritmo bastante eficiente para ordenar elementos.')
print ([3,6,8,10,1,2,1])
print(quicksort([3,6,8,10,1,2,1]))