diff --git a/operators.qmd b/operators.qmd index 9791c57..f32cab6 100644 --- a/operators.qmd +++ b/operators.qmd @@ -146,7 +146,7 @@ These operators assign values to variables. A more comprehensive review can be o These are helpful operators for working in that can perform a variety of functions. A few common miscellaneous operators are described below. | Miscellaneous Operator | Description | -|:--------------------:|:------------------------------------------------:| +|:----------------------:|:--------------------------------------------------------------:| | %\*% | Matrix multiplication (to be discussed in subsequent chapters) | | %in% | Does an element belong to a vector | | : | Generate a sequence | diff --git a/vectors.qmd b/vectors.qmd index 7d961cf..f471cbf 100644 --- a/vectors.qmd +++ b/vectors.qmd @@ -44,7 +44,7 @@ Vectors cannot be of mixed data type. The most common way to create a vector is Additionally, R is a vectorized language because mathematical operations are applied to each element of the vector without the need to loop through the vector. -Examples of vectors are shown below: +Examples of vectors made up of different data types are shown below: - Numbers @@ -121,13 +121,9 @@ j <- seq(20, 2, length.out=3) j ``` -OR +The `seq()` function can also be used with the arguments first, by, and length. -seq(first, by = **, length =** ) - -Arguments - -first: by: length: +`seq(first, by = ___, length = ____)` Example @@ -162,9 +158,9 @@ n <- rep(7:10, length.out = 20) n ``` -OR +Random number generation -Random number generation with `runif()` +The `runif()` function can be used to generate a specific number of random numbers between a minimum and maximum value. `runif(n, min = 0, max = 1)` @@ -172,7 +168,8 @@ Random number generation with `runif()` runif(5, min = 3, max = 100) ``` -**NOTE** If you run the previous code block multiple times you will get different answers. Use set.seed() to get a similar sequence every time you run the calculation. +**NOTE** +If you run the previous code block multiple times you will get different answers. Use ```set.seed()``` to get a similar sequence every time you run the calculation. ```{r} set.seed(12345) @@ -220,7 +217,13 @@ Create two vectors and look at the similarities/differences between the two set.seed(2468) vec_top_1 <- seq(2, by = 6, length = 100) vec_top_2 <- seq(4, by = 4, length = 100) +``` + +```{r} vec_top_1 +``` + +```{r} vec_top_2 ``` @@ -236,10 +239,6 @@ intersect(vec_top_1, vec_top_2) setdiff(vec_top_1, vec_top_2) ``` -```{r} -setequal(vec_top_1, vec_top_2) -``` - ### Vector Operations Vectors of equal length can be operated on together. If one vector is shorter, it will get recycled, as its elements are repeated until it matches the elements of the longer vector. When using vectors of unequal lengths, it would be ideal if the longer vector is a multiple of the shorter vector. @@ -316,15 +315,15 @@ vec_3 ^ vec_4 The functions listed below can be applied to vectors: -a. `any()` +a. `any()` -b. `all()` +b. `all()` -c. `nchar()` +c. `nchar()` -d. `length()` +d. `length()` -e. `typeof()` +e. `typeof()` Examples @@ -372,72 +371,123 @@ nchar(vec_5) 3. Stats and math on vectors -A variety of mathematical operations can be performed on vectors. These operations together with examples are listed below. +A variety of mathematical operations can be performed on vectors. These operations together with examples are listed below. -- Length +- Length length() -- Count +- Count count() -- Sum +- Sum sum() -- Median +- Median -median() +median() -- Minimum +- Minimum min() -- Maximum +- Maximum max() -- Mean +- Mean mean() -- Median +- Median median() -- Quantile +- Quantile quantile() -- Standard Deviation +- Standard Deviation sd() -- Inter-Quartile Range (IQR) +- Inter-Quartile Range (IQR) +IQR() -- Cumulative Sum +- Cumulative Sum cumsum() -- Trigonometric functions +- Range + +range() + +- Cut + +cut() + +- Pretty + +pretty() + +- Trigonometric functions + +sin() + +cos() -sin() -cos() tan() -- Logarithmic functions +- Logarithmic functions + +log() + +log2() -log() -log2() -log10 +log10() - Miscellaneous functions -round(x, digits = …) -floor() -leading() +unique() + +duplicated() + +which() + +is.element() + +```{r} +char_vec <- c("a", "b", "c", "d") +``` + +```{r} +char_vec_upper <- toupper(char_vec) +char_vec_upper +``` + +```{r} +char_vec_lower <- tolower(char_vec_upper) +char_vec_lower +``` + +- Create contingency tables + +Use the table() function to quickly create frequency tables and prop.table() to create a frequency table of proportions. + +table() prop.table() dimnames() – get names of columns and rows in tables names(dimnames()) – set the names of columns and rows in tables + +Examples + +table(vector) – frequency count of each distinct value in a vector + +table(cut(), pretty()) – review the use of cut and pretty### + +Create a matrix/dataframe table(vector1, vector2) – vector1 will go in rows and vector2 will go into columns + +table(cut(vector1), pretty(vector1), vector2) 4. Recycling of vectors @@ -454,18 +504,18 @@ D) Accessing elements of a vector and subsetting To access the elements of a vector, we can use numeric-, character-, or logical-based indexing. -Examples +Examples -1. Name the columns of a vector with names(). +1. Name the columns of a vector with names(). -Create the vector. +a) Create the vector. ```{r} vec_name <- 1:5 vec_name ``` -Name the individual elements. +b) Name the individual elements. ```{r} names(vec_name) <- c("a", "c", "e", "g", "i") @@ -497,6 +547,8 @@ c) Access a vector using its position vec_index[4] ``` +With negative indexing, every element except the one specified is returned. + ```{r} vec_index[-2] ``` @@ -505,7 +557,7 @@ vec_index[-2] vec_index[c(2,4)] ``` -d) Modify a vector using indexing +d) Modify a vector using indexing ```{r} vec_index @@ -519,36 +571,6 @@ vec_index[5] <- 1000 vec_index ``` -Other Functions on vectors - -tolower() / toupper() / - -%in% - -unique() / duplicated() - -which() is.element() - -Binning data - -range() – min and max cut() – allocates each element to a bin pretty() – creates breakpoints nicely - -Create contingency tables - -Use the table() function to quickly create frequency tables and prop.table() to create a frequency table of proportions. - -table() prop.table() dimnames() – get names of columns and rows in tables names(dimnames()) – set the names of columns and rows in tables - -Examples - -table(vector) – frequency count of each distinct value in a vector - -table(cut(), pretty()) – review the use of cut and pretty### - -Create a matrix/dataframe table(vector1, vector2) – vector1 will go in rows and vector2 will go into columns - -table(cut(vector1), pretty(vector1), vector2) - ## Exercises i. Create a numeric vector with values 1 through 5 using c() and extract the middle element from the vector using the described subsetting methods.