forked from tech-srl/code2vec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcommon.py
242 lines (214 loc) · 8.98 KB
/
common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import re
import json
import sys
from enum import Enum
class Config:
@staticmethod
def get_default_config(args):
config = Config()
config.NUM_EPOCHS = 20
config.SAVE_EVERY_EPOCHS = 1
config.BATCH_SIZE = 1024
config.TEST_BATCH_SIZE = config.BATCH_SIZE
config.READING_BATCH_SIZE = 1300 * 4
config.NUM_BATCHING_THREADS = 2
config.BATCH_QUEUE_SIZE = 300000
config.MAX_CONTEXTS = 200
config.WORDS_VOCAB_SIZE = 1301136
config.TARGET_VOCAB_SIZE = 261245
config.PATHS_VOCAB_SIZE = 911417
config.EMBEDDINGS_SIZE = 128
config.MAX_TO_KEEP = 10
# Automatically filled, do not edit:
config.TRAIN_PATH = args.data_path
config.TEST_PATH = args.test_path
config.SAVE_PATH = args.save_path
config.LOAD_PATH = args.load_path
config.RELEASE = args.release
config.EXPORT_CODE_VECTORS = args.export_code_vectors
return config
def __init__(self):
self.NUM_EPOCHS = 0
self.SAVE_EVERY_EPOCHS = 0
self.BATCH_SIZE = 0
self.TEST_BATCH_SIZE = 0
self.READING_BATCH_SIZE = 0
self.NUM_BATCHING_THREADS = 0
self.BATCH_QUEUE_SIZE = 0
self.TRAIN_PATH = ''
self.TEST_PATH = ''
self.MAX_CONTEXTS = 0
self.WORDS_VOCAB_SIZE = 0
self.TARGET_VOCAB_SIZE = 0
self.PATHS_VOCAB_SIZE = 0
self.EMBEDDINGS_SIZE = 0
self.SAVE_PATH = ''
self.LOAD_PATH = ''
self.MAX_TO_KEEP = 0
self.RELEASE = False
self.EXPORT_CODE_VECTORS = False
class common:
noSuchWord = "NoSuchWord"
@staticmethod
def normalize_word(word):
stripped = re.sub(r'[^a-zA-Z]', '', word)
if len(stripped) == 0:
return word.lower()
else:
return stripped.lower()
@staticmethod
def _load_vocab_from_histogram(path, min_count=0, start_from=0, return_counts=False):
with open(path, 'r') as file:
word_to_index = {}
index_to_word = {}
word_to_count = {}
next_index = start_from
for line in file:
line_values = line.rstrip().split(' ')
if len(line_values) != 2:
continue
word = line_values[0]
count = int(line_values[1])
if count < min_count:
continue
if word in word_to_index:
continue
word_to_index[word] = next_index
index_to_word[next_index] = word
word_to_count[word] = count
next_index += 1
result = word_to_index, index_to_word, next_index - start_from
if return_counts:
result = (*result, word_to_count)
return result
@staticmethod
def _load_vocab_from_dict(word_to_count, min_count=0, start_from=0):
word_to_index = {}
index_to_word = {}
next_index = start_from
for word, count in word_to_count.items():
if count < min_count:
continue
if word in word_to_index:
continue
word_to_index[word] = next_index
index_to_word[next_index] = word
word_to_count[word] = count
next_index += 1
return word_to_index, index_to_word, next_index - start_from
@staticmethod
def load_vocab_from_histogram(path, min_count=0, start_from=0, max_size=None, return_counts=False):
if max_size is not None:
word_to_index, index_to_word, next_index, word_to_count = \
common._load_vocab_from_histogram(path, min_count, start_from, return_counts=True)
if next_index <= max_size:
results = (word_to_index, index_to_word, next_index)
if return_counts:
results = (*results, word_to_count)
return results
# Take min_count to be one plus the count of the max_size'th word
min_count = sorted(word_to_count.values(), reverse=True)[max_size] + 1
return common._load_vocab_from_histogram(path, min_count, start_from, return_counts)
@staticmethod
def load_vocab_from_dict(word_to_count, max_size=None, start_from=0):
if max_size is not None:
if max_size > len(word_to_count):
min_count = 0
else:
min_count = sorted(word_to_count.values(), reverse=True)[max_size] + 1
return common._load_vocab_from_dict(word_to_count, min_count, start_from)
@staticmethod
def load_json(json_file):
data = []
with open(json_file, 'r') as file:
for line in file:
current_program = common.process_single_json_line(line)
if current_program is None:
continue
for element, scope in current_program.items():
data.append((element, scope))
return data
@staticmethod
def load_json_streaming(json_file):
with open(json_file, 'r') as file:
for line in file:
current_program = common.process_single_json_line(line)
if current_program is None:
continue
for element, scope in current_program.items():
yield (element, scope)
@staticmethod
def save_word2vec_file(file, vocab_size, dimension, index_to_word, vectors):
file.write('%d %d\n' % (vocab_size, dimension))
for i in range(1, vocab_size + 1):
if i in index_to_word:
file.write(index_to_word[i] + ' ')
file.write(' '.join(map(str, vectors[i])) + '\n')
@staticmethod
def calculate_max_contexts(file):
contexts_per_word = common.process_test_input(file)
return max(
[max(l, default=0) for l in [[len(contexts) for contexts in prog.values()] for prog in contexts_per_word]],
default=0)
@staticmethod
def binary_to_string(binary_string):
return binary_string.decode("utf-8")
@staticmethod
def binary_to_string_list(binary_string_list):
return [common.binary_to_string(w) for w in binary_string_list]
@staticmethod
def binary_to_string_matrix(binary_string_matrix):
return [common.binary_to_string_list(l) for l in binary_string_matrix]
@staticmethod
def load_file_lines(path):
with open(path, 'r') as f:
return f.read().splitlines()
@staticmethod
def split_to_batches(data_lines, batch_size):
return [data_lines[x:x + batch_size] for x in range(0, len(data_lines), batch_size)]
@staticmethod
def legal_method_names_checker(name):
return name != common.noSuchWord and re.match('^[a-zA-Z\|]+$', name)
@staticmethod
def filter_impossible_names(top_words):
result = list(filter(common.legal_method_names_checker, top_words))
return result
@staticmethod
def get_subtokens(str):
return str.split('|')
@staticmethod
def parse_results(result, unhash_dict, topk=5):
prediction_results = []
for single_method in result:
original_name, top_suggestions, top_scores, attention_per_context = list(single_method)
current_method_prediction_results = PredictionResults(original_name)
for i, predicted in enumerate(top_suggestions):
if predicted == common.noSuchWord:
continue
suggestion_subtokens = common.get_subtokens(predicted)
current_method_prediction_results.append_prediction(suggestion_subtokens, top_scores[i].item())
for context, attention in [(key, attention_per_context[key]) for key in
sorted(attention_per_context, key=attention_per_context.get, reverse=True)][
:topk]:
token1, hashed_path, token2 = context
if hashed_path in unhash_dict:
unhashed_path = unhash_dict[hashed_path]
current_method_prediction_results.append_attention_path(attention.item(), token1=token1,
path=unhashed_path, token2=token2)
prediction_results.append(current_method_prediction_results)
return prediction_results
class PredictionResults:
def __init__(self, original_name):
self.original_name = original_name
self.predictions = list()
self.attention_paths = list()
def append_prediction(self, name, probability):
self.predictions.append({'name': name, 'probability': probability})
def append_attention_path(self, attention_score, token1, path, token2):
self.attention_paths.append({'score': attention_score,
'path': path,
'token1': token1,
'token2': token2})
class VocabType(Enum):
Token = 1
Target = 2