forked from mohamadsrour/Vision-Language-AML
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_data.py
409 lines (333 loc) · 16.7 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
from PIL import Image
from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as T
import json
import clip
CATEGORIES = {
'dog': 0,
'elephant': 1,
'giraffe': 2,
'guitar': 3,
'horse': 4,
'house': 5,
'person': 6,
}
class PACSDatasetBaseline(Dataset):
def __init__(self, examples, transform):
self.examples = examples
self.transform = transform
def __len__(self):
return len(self.examples)
def __getitem__(self, index):
img_path, y = self.examples[index]
x = self.transform(Image.open(img_path).convert('RGB'))
return x, y
class PACSDatasetDisentangle(Dataset):
"""A Dataset that is composed both of source and target samples.
It returns two elements, one from source and one from target"""
def __init__(self, source_samples, target_samples, transform):
self.source_samples = source_samples
self.target_samples = target_samples
self.src_len = len(source_samples)
self.trg_len = len(target_samples)
self.len = max(self.src_len, self.trg_len)
self.transform = transform
def __len__(self):
return self.len
def __getitem__(self, index):
img_path_src, y_src = self.source_samples[index % self.src_len]
img_path_trg, y_trg = self.target_samples[index % self.trg_len]
x_src = self.transform(Image.open(img_path_src).convert('RGB'))
x_trg = self.transform(Image.open(img_path_trg).convert('RGB'))
return x_src, y_src, x_trg, y_trg
class PACSDatasetCLIP1(Dataset):
"""A Dataset that is composed both of source and target samples.
It returns two elements, one from source and one from target"""
def __init__(self, source_samples, target_samples, transform):
self.source_samples = source_samples
self.target_samples = target_samples
self.src_len = len(source_samples)
self.trg_len = len(target_samples)
self.len = max(self.src_len, self.trg_len)
self.transform = transform
def __len__(self):
return self.len
def __getitem__(self, index):
src, y_src = self.source_samples[index % self.src_len]
img_path_src, d_src = src['image_name'], src['descriptions']
trg, y_trg = self.target_samples[index % self.trg_len]
img_path_trg, d_trg = trg['image_name'], trg['descriptions']
x_src = self.transform(Image.open(img_path_src).convert('RGB'))
x_trg = self.transform(Image.open(img_path_trg).convert('RGB'))
return x_src, y_src, d_src, x_trg, y_trg, d_trg
class PACSDatasetCLIP2(Dataset):
def __init__(self, examples, transform):
self.examples = examples
self.transform = transform
def __len__(self):
return len(self.examples)
def __getitem__(self, index):
img_path, y, d = self.examples[index]
x = self.transform(Image.open(img_path).convert('RGB'))
return x, y, d
def read_lines(data_path, domain_name):
examples = {}
with open(f'{data_path}/{domain_name}.txt') as f:
lines = f.readlines()
for line in lines:
line = line.strip().split()[0].split('/')
category_name = line[3]
category_idx = CATEGORIES[category_name]
image_name = line[4]
image_path = f'{data_path}/kfold/{domain_name}/{category_name}/{image_name}'
if category_idx not in examples.keys():
examples[category_idx] = [image_path]
else:
examples[category_idx].append(image_path)
return examples
def read_lines_clip(data_path, domain_name):
labeled_examples = {}
with open(f'{data_path}/{domain_name}.txt') as f:
lines = f.readlines()
with open(f'labeled_PACS/labeled_{domain_name}.txt') as g:
labeled_lines = g.readlines()
labeled_image_names = []
descriptions = []
for labeled_line in labeled_lines:
d = json.loads(labeled_line.strip())
labeled_image_names.append(d['image_name'])
descriptions.append(d['descriptions'])
for line in lines:
descr = ''
line = line.strip().split()[0].split('/')
category_name = line[3]
category_idx = CATEGORIES[category_name]
image_name = line[4]
image_path = f'{data_path}/kfold/{domain_name}/{category_name}/{image_name}'
if f'{domain_name}/{category_name}/{image_name}' in labeled_image_names:
descr = descriptions[labeled_image_names.index(f'{domain_name}/{category_name}/{image_name}')]
img = {'image_name': image_path, 'descriptions': descr}
if category_idx not in labeled_examples.keys():
labeled_examples[category_idx] = [img]
else:
labeled_examples[category_idx].append(img)
return labeled_examples
def build_splits_baseline(opt):
source_domain = 'art_painting'
target_domain = opt['target_domain']
source_examples = read_lines(opt['data_path'], source_domain)
target_examples = read_lines(opt['data_path'], target_domain)
# Compute ratios of examples for each category
source_category_ratios = {category_idx: len(examples_list) for category_idx, examples_list in source_examples.items()}
source_total_examples = sum(source_category_ratios.values())
source_category_ratios = {category_idx: c / source_total_examples for category_idx, c in source_category_ratios.items()}
# Build splits - we train only on the source domain (Art Painting)
val_split_length = source_total_examples * 0.2 # 20% of the training split used for validation
train_examples = []
val_examples = []
test_examples = []
for category_idx, examples_list in source_examples.items():
split_idx = round(source_category_ratios[category_idx] * val_split_length)
for i, example in enumerate(examples_list):
if i > split_idx:
train_examples.append([example, category_idx]) # each pair is [path_to_img, class_label]
else:
val_examples.append([example, category_idx]) # each pair is [path_to_img, class_label]
for category_idx, examples_list in target_examples.items():
for example in examples_list:
test_examples.append([example, category_idx]) # each pair is [path_to_img, class_label]
# Transforms
normalize = T.Normalize([0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # ResNet18 - ImageNet Normalization
train_transform = T.Compose([
T.Resize(256),
T.RandAugment(3, 15),
T.CenterCrop(224),
T.ToTensor(),
normalize
])
eval_transform = T.Compose([
T.Resize(256),
T.CenterCrop(224),
T.ToTensor(),
normalize
])
# Dataloaders
train_loader = DataLoader(PACSDatasetBaseline(train_examples, train_transform), batch_size=opt['batch_size'], num_workers=opt['num_workers'], shuffle=True)
val_loader = DataLoader(PACSDatasetBaseline(val_examples, eval_transform), batch_size=opt['batch_size'], num_workers=opt['num_workers'], shuffle=False)
test_loader = DataLoader(PACSDatasetBaseline(test_examples, eval_transform), batch_size=opt['batch_size'], num_workers=opt['num_workers'], shuffle=False)
return train_loader, val_loader, test_loader
def build_splits_domain_disentangle(opt):
"""Return DataLoaders for the domain disentangle experiment."""
source_domain = 'art_painting'
target_domain = opt['target_domain']
# how to split the samples??
# since the target is used at traing time without the label
# it makes sense to use it as the test set...
# I will ask the professor
source_examples = read_lines(opt['data_path'], source_domain)
target_examples = read_lines(opt['data_path'], target_domain)
# Compute ratios of examples for each category
source_category_ratios = {category_idx: len(examples_list) for category_idx, examples_list in source_examples.items()}
source_total_examples = sum(source_category_ratios.values())
source_category_ratios = {category_idx: c / source_total_examples for category_idx, c in source_category_ratios.items()}
target_category_ratios = {category_idx: len(examples_list) for category_idx, examples_list in target_examples.items()}
target_total_examples = sum(target_category_ratios.values())
target_category_ratios = {category_idx: c / target_total_examples for category_idx, c in target_category_ratios.items()}
# Build splits - we train only on the source domain (Art Painting)
val_split_length_source = source_total_examples * 0.2 # 20% of the training split used for validation
val_split_length_target = target_total_examples * 0.2 # 20% of the training split used for validation
source_samples = []
target_samples = []
val_samples = []
test_samples = []
for category_idx, examples_list in source_examples.items():
split_idx = round(source_category_ratios[category_idx] * val_split_length_source)
for i, example in enumerate(examples_list):
if i > split_idx:
source_samples.append([example, category_idx])
else:
val_samples.append([example, category_idx])
for category_idx, examples_list in target_examples.items():
split_idx = round(target_category_ratios[category_idx] * val_split_length_target)
for i, example in enumerate(examples_list):
if i > split_idx:
target_samples.append([example, category_idx])
else:
val_samples.append([example, category_idx])
for category_idx, examples_list in target_examples.items():
for example in examples_list:
test_samples.append([example, category_idx])
# Transforms
normalize = T.Normalize([0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # ResNet18 - ImageNet Normalization
train_transform = T.Compose([
T.Resize(256),
T.RandAugment(3, 15),
T.CenterCrop(224),
T.ToTensor(),
normalize
])
eval_transform = T.Compose([
T.Resize(256),
T.CenterCrop(224),
T.ToTensor(),
normalize
])
# Dataloaders
train_loader = DataLoader(PACSDatasetDisentangle(source_samples, target_samples, train_transform), batch_size=32, num_workers=1, shuffle=True)
val_loader = DataLoader(PACSDatasetBaseline(val_samples, eval_transform), batch_size=32, num_workers=1, shuffle=False)
test_loader = DataLoader(PACSDatasetBaseline(test_samples, eval_transform), batch_size=32, num_workers=1, shuffle=False)
return train_loader, val_loader, test_loader
def build_splits_clip_disentangle(opt):
"""Return DataLoaders for the CLIP domain disentangle experiment."""
source_domain = 'art_painting'
target_domain = opt['target_domain']
# how to split the samples??
# since the target is used at traing time without the label
# it makes sense to use it as the test set...
# I will ask the professor
source_examples = read_lines_clip(opt['data_path'], source_domain)
target_examples = read_lines_clip(opt['data_path'], target_domain)
# Compute ratios of examples for each category
source_category_ratios = {category_idx: len(examples_list) for category_idx, examples_list in source_examples.items()}
source_total_examples = sum(source_category_ratios.values())
source_category_ratios = {category_idx: c / source_total_examples for category_idx, c in source_category_ratios.items()}
target_category_ratios = {category_idx: len(examples_list) for category_idx, examples_list in target_examples.items()}
target_total_examples = sum(target_category_ratios.values())
target_category_ratios = {category_idx: c / target_total_examples for category_idx, c in target_category_ratios.items()}
# Build splits - we train only on the source domain (Art Painting)
val_split_length_source = source_total_examples * 0.2 # 20% of the training split used for validation
val_split_length_target = target_total_examples * 0.2 # 20% of the training split used for validation
source_samples = []
target_samples = []
val_samples = []
test_samples = []
for category_idx, examples_list in source_examples.items():
split_idx = round(source_category_ratios[category_idx] * val_split_length_source)
for i, example in enumerate(examples_list):
if i > split_idx:
source_samples.append([{'image_name': example['image_name'],'descriptions': str(example['descriptions'])}, category_idx ])
else:
val_samples.append([example['image_name'], category_idx])
for category_idx, examples_list in target_examples.items():
split_idx = round(target_category_ratios[category_idx] * val_split_length_target)
for i, example in enumerate(examples_list):
if i > split_idx:
target_samples.append([{'image_name': example['image_name'],'descriptions': str(example['descriptions'])}, category_idx ])
else:
val_samples.append([example['image_name'], category_idx])
for category_idx, examples_list in target_examples.items():
for example in examples_list:
test_samples.append([example['image_name'], category_idx])
# Transforms
normalize = T.Normalize([0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # ResNet18 - ImageNet Normalization
train_transform = T.Compose([
T.Resize(256),
T.RandAugment(3, 15),
T.CenterCrop(224),
T.ToTensor(),
normalize
])
eval_transform = T.Compose([
T.Resize(256),
T.CenterCrop(224),
T.ToTensor(),
normalize
])
# Dataloaders
train_loader = DataLoader(PACSDatasetCLIP1(source_samples, target_samples, train_transform), batch_size=32, num_workers=1, shuffle=True)
val_loader = DataLoader(PACSDatasetBaseline(val_samples, eval_transform), batch_size=32, num_workers=1, shuffle=False)
test_loader = DataLoader(PACSDatasetBaseline(test_samples, eval_transform), batch_size=32, num_workers=1, shuffle=False)
return train_loader, val_loader, test_loader
class PACSDatasetCLIPDG(Dataset):
def __init__(self, examples, transform):
self.examples = examples
self.transform = transform
def __len__(self):
return len(self.examples)
def __getitem__(self, index):
img_path, y, desc, dom = self.examples[index]
x = self.transform(Image.open(img_path).convert('RGB'))
return x, y, desc, dom
def build_splits_clip_disentangle_dg(opt):
target_domain = opt['target_domain']
source_domains = DOMAINS.copy()
source_domains.remove(target_domain)
training_examples = []
val_examples = []
for d, domain in enumerate(source_domains):
source_examples = read_lines_clip(opt['data_path'], domain)
source_category_ratios = {category_idx: len(examples_list) for category_idx, examples_list in source_examples.items()}
source_total_examples = sum(source_category_ratios.values())
source_category_ratios = {category_idx: c / source_total_examples for category_idx, c in source_category_ratios.items()}
val_split_length_source = source_total_examples * 0.2
for category_idx, examples_list in source_examples.items():
split_idx = round(source_category_ratios[category_idx] * val_split_length_source)
for i, example in enumerate(examples_list):
if i > split_idx:
training_examples.append([example['image_name'], category_idx, ' '.join(example['descriptions']), d])
else:
val_examples.append([example['image_name'], category_idx])
target_examples = read_lines(opt['data_path'], target_domain)
test_examples = []
for category_idx, examples_list in target_examples.items():
for example in examples_list:
test_examples.append([example, category_idx])
normalize = T.Normalize([0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # ResNet18 - ImageNet Normalization
train_transform = T.Compose([
T.Resize(256),
T.RandAugment(3, 15),
T.CenterCrop(224),
T.ToTensor(),
normalize
])
eval_transform = T.Compose([
T.Resize(256),
T.CenterCrop(224),
T.ToTensor(),
normalize
])
# Dataloaders
train_loader = DataLoader(PACSDatasetCLIPDG(training_examples, train_transform), batch_size=opt['batch_size'], num_workers=1, shuffle=True)
val_loader = DataLoader(PACSDatasetBaseline(val_examples, eval_transform), batch_size=opt['batch_size'], num_workers=1, shuffle=False)
test_loader = DataLoader(PACSDatasetBaseline(test_examples, eval_transform), batch_size=opt['batch_size'], num_workers=1, shuffle=False)
return train_loader, val_loader, test_loader