-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTinyFoA_LC.py
374 lines (285 loc) · 13.9 KB
/
TinyFoA_LC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import torch
import torch.nn as nn
from torch.nn.modules.utils import _pair
import torch.nn.functional as F
import torch
from torchvision.datasets import MNIST
from torchvision.transforms import Compose, ToTensor, Normalize, Lambda
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
import datetime
from torch.autograd.function import Function, InplaceFunction
start_time = datetime.datetime.now()
#dataset: 1-mnist,2-cifar10,3-cifar100,5-mitbih
dataset = 1
print('dataset: '+str(dataset))
epcoh_number=200
layer_channels = [16,32,64,64] #4
num_layers = len(layer_channels)
kernel_size = 3
stride = 1
bias = True # Set to True if you want bias in the layers
if torch.cuda.is_available():
device = torch.device("cuda")
print("CUDA is available. Using GPU for computation.")
else:
device = torch.device("cpu")
print("CUDA is not available. Using CPU for computation.")
def MNIST_loaders(train_batch_size=100, test_batch_size=100):
transform = Compose([
ToTensor()])
#Normalize((0.1307,), (0.3081,)),
#Lambda(lambda x: torch.flatten(x))])
trainset = MNIST('./data/', train=True,
download=True,
transform=transform)
train_loader = DataLoader(trainset,
batch_size=train_batch_size, shuffle=False) # True
test_loader = DataLoader(
MNIST('./data/', train=False,
download=True,
transform=transform),
batch_size=test_batch_size, shuffle=False)
return train_loader, test_loader
def CIFAR10_loaders(train_batch_size=100, test_batch_size=100):
transform = Compose([
transforms.ToTensor(),
Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(trainset, batch_size=train_batch_size,
shuffle=False)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
test_loader = torch.utils.data.DataLoader(testset, batch_size=test_batch_size,
shuffle=False)
return train_loader, test_loader
def CIFAR100_loaders(train_batch_size=100, test_batch_size=100):
transform = Compose([transforms.ToTensor(),
Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR100(root='./data', train=True,
download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(trainset, batch_size=train_batch_size,
shuffle=False)
testset = torchvision.datasets.CIFAR100(root='./data', train=False,
download=True, transform=transform)
test_loader = torch.utils.data.DataLoader(testset, batch_size=test_batch_size,
shuffle=False)
return train_loader, test_loader
def MITBIH_loaders():
import mitbih_dataset.load_data as bih
balance = 1 # 0 means no balanced (raw data), and 1 means balanced (weighted selected).
# Please see .mithib_dataset/Distribution.png for more data structure and distribution information.
# The above .png is from the paper-Zhang, Dengqing, et al. "An ECG heartbeat classification method based on deep convolutional neural network." Journal of Healthcare Engineering 2021 (2021): 1-9.
x_train, y_train, x_test, y_test = bih.load_data(balance)
x_train = x_train[:,:169,:].reshape((x_train.shape[0],1,13,13))
x_test = x_test[:,:169,:].reshape((x_test.shape[0],1,13,13))
# (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
train_data=torch.utils.data.TensorDataset(torch.tensor(x_train).float(),torch.tensor(y_train).long())
test_data=torch.utils.data.TensorDataset(torch.tensor(x_test).float(),torch.tensor(y_test).long())
train_loader = torch.utils.data.DataLoader(train_data,batch_size=100,shuffle=True,pin_memory=True,num_workers=0)
test_loader = torch.utils.data.DataLoader(test_data,batch_size=100,shuffle=True,pin_memory=True,num_workers=0)
return train_loader, test_loader
if dataset==1:
#input_size =784
in_channels = 1
output_size = 28 # Desired output size after all layers
class_num = 10
learning_rate = 0.0001
print('Dataset: mnist')
#print('learning_rate',learning_rate)
train_loader, test_loader = MNIST_loaders()
elif dataset==2:
#input_size =3072
in_channels = 3
output_size = 32 # Desired output size after all layers
class_num = 10
learning_rate = 0.0001
print('Dataset: cifar10')
#print('learning_rate',learning_rate)
train_loader, test_loader = CIFAR10_loaders()
elif dataset==3:
#input_size =3072
in_channels = 3
output_size = 32 # Desired output size after all layers
class_num = 100
learning_rate = 0.0001
print('Dataset: cifar100')
#print('learning_rate',learning_rate)
train_loader, test_loader = CIFAR100_loaders()
elif dataset ==5:
#input_size =169
in_channels = 1
output_size = 13
class_num = 5
learning_rate = 0.0001
print('Dataset: MITBIH')
#print('learning_rate',learning_rate)
train_loader, test_loader= MITBIH_loaders()
class Binarize(InplaceFunction):
def forward(ctx,input,quant_mode='det',allow_scale=True,inplace=False):
ctx.inplace = inplace
if ctx.inplace:
ctx.mark_dirty(input)
output = input
else:
output = input.clone()
scale= output.abs().mean() if allow_scale else 1 #from xnornet
ctx.save_for_backward(input) #from binarynet
if quant_mode=='det':
return output.div(scale).sign().mul(scale)
else:
return output.div(scale).add_(1).div_(2).add_(torch.rand(output.size()).add(-0.5)).clamp_(0,1).round().mul_(2).add_(-1).mul(scale)
def backward(ctx,grad_output):
#STE
input, = ctx.saved_tensors
#grad_input =torch.where(r.data > 1, torch.tensor(0.0), torch.tensor(1.0)) #r.detach().apply_(lambda x: 0 if x>1 else 1)
#grad_input=grad_output
grad_input=grad_output.clone()
grad_input[input.ge(1)] = 0 #from binarynet
grad_input[input.le(-1)] = 0 #from binarynet
#.sign()
return grad_input,None,None,None
def binarized(input,quant_mode='det'):
return Binarize.apply(input,quant_mode)
class LocallyConnected2d_binary(nn.Module):
def __init__(self, in_channels, out_channels, output_size, kernel_size, stride, bias=False):
super(LocallyConnected2d_binary, self).__init__()
output_size = _pair(output_size)
self.weight = nn.Parameter(
#nn.init.kaiming_uniform_(torch.empty(1, out_channels, in_channels, output_size[0], output_size[1], kernel_size**2), mode='fan_in', nonlinearity='relu')
torch.randn(1, out_channels, in_channels, output_size[0], output_size[1], kernel_size**2)
)
if bias:
self.bias = nn.Parameter(
torch.randn(1, out_channels, output_size[0], output_size[1])
)
else:
self.register_parameter('bias', None)
self.kernel_size = _pair(kernel_size)
self.stride = _pair(stride)
self.padding = int((kernel_size-1)/2)
self.pad = pad=(self.padding,self.padding,
self.padding,self.padding)
self.dropout = nn.Dropout2d(p=0.1)
self.bn = nn.BatchNorm2d(out_channels)
print('pro:'+str(self.dropout))
def forward(self, x):
_, c, h, w = x.size()
kh, kw = self.kernel_size
dh, dw = self.stride
x = F.pad(x, self.pad, mode='constant', value=0)
x = x.unfold(2, kh, dh).unfold(3, kw, dw)
x = x.contiguous().view(*x.size()[:-2], -1)
# Sum in in_channel and kernel_size dims
#out = (x.unsqueeze(1) * self.weight ).sum([2, -1])
out = (x.unsqueeze(1) * binarized(self.weight)).sum([2, -1])
if self.bias is not None:
out += self.bias
#return F.relu(self.bn(out))
return binarized(F.relu(self.bn(out)))
print('model define local connceted')
class Net_one(nn.Module):
def __init__(self,in_channels,layer_channels, output_size, kernel_size, stride, class_num, bias):
super(Net_one, self).__init__()
self.layer = LocallyConnected2d_binary(in_channels, layer_channels[0], output_size, kernel_size, stride, bias=bias)
self.flatten = nn.Flatten()
self.lastfc = nn.Linear(layer_channels[0]*output_size*output_size, class_num)
#self.dropout = nn.Dropout2d(p=0.2)
def forward(self, x):
x =self.layer(x)
x_internal = F.relu(x)
output = self.lastfc(self.flatten(x_internal))
#output = self.lastfc(self.dropout(self.flatten(x_internal)))
return output,x_internal
class Net_more(nn.Module):
def __init__(self,model,layer_channels, output_size, kernel_size, stride, bias,class_num,index):
super(Net_more, self).__init__()
self.previous_model=model
self.layer = LocallyConnected2d_binary(layer_channels[index-1], layer_channels[index], output_size, kernel_size, stride, bias=bias)
self.flatten = nn.Flatten()
self.lastfc = nn.Linear(output_size*output_size*layer_channels[index], class_num)
#self.dropout = nn.Dropout2d(p=0.2)
def forward(self, x):
_,x = self.previous_model(x)
x =self.layer(x)
x_internal = F.relu(x)
output = self.lastfc(self.flatten(x_internal))
#output = self.lastfc(self.dropout(self.flatten(x_internal)))
return output,x_internal
print('class_num='+str(class_num))
for index in range(num_layers):
if index == 0:
new_model=Net_one(in_channels, layer_channels, output_size, kernel_size, stride, class_num,bias)
else:
for param in new_model.parameters():
param.requires_grad = False
new_model = Net_more(new_model,layer_channels, output_size, kernel_size, stride, bias,class_num,index)
for name, param in new_model.named_parameters():
if name =='lastfc.weight' or name=='lastfc.bias':
param.requires_grad = False
print(new_model)
for name, param in new_model.named_parameters():
print(f"Parameter: {name}, Requires Gradient: {param.requires_grad}")
new_model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(new_model.parameters(), lr=0.0001)
flip_tag = 0
part_numer = 2
# Train the model
total_step = len(train_loader)
new_model.train()
for epoch in range(epcoh_number):
flip_tag +=1
for i, (images, labels) in enumerate(train_loader):
# Move tensors to the configured device
images = images.to(device)
labels = labels.to(device)
# Forward pass
outputs,_ = new_model(images)
loss = criterion(outputs, labels)
# Backprpagation and optimization
optimizer.zero_grad()
loss.backward()
if index == 0:
for part_index in range(part_numer):
if flip_tag%(part_numer)==part_index:
frozen_weights = new_model.state_dict()['layer.weight'][:,int(layer_channels[0]/part_numer)*(part_index):int(layer_channels[0]/part_numer)*(part_index+1),:,:,:,:].clone().detach()
else:
for part_index in range(part_numer):
if flip_tag%(part_numer)==part_index:
frozen_weights = new_model.state_dict()['layer.weight'][:,int(layer_channels[index]/part_numer)*(part_index):int(layer_channels[index]/part_numer)*(part_index+1),int(layer_channels[index-1]/part_numer)*(part_index):int(layer_channels[index-1]/part_numer)*(part_index+1),:,:,:].clone().detach()
optimizer.step()
if index == 0:
for part_index in range(part_numer):
if flip_tag%(part_numer)==part_index:
new_model.state_dict()['layer.weight'][:,int(layer_channels[0]/part_numer)*(part_index):int(layer_channels[0]/part_numer)*(part_index+1),:,:,:,:] = frozen_weights.data
else:
for part_index in range(part_numer):
if flip_tag%(part_numer)==part_index:
new_model.state_dict()['layer.weight'][:,int(layer_channels[index]/part_numer)*(part_index):int(layer_channels[index]/part_numer)*(part_index+1),int(layer_channels[index-1]/part_numer)*(part_index):int(layer_channels[index-1]/part_numer)*(part_index+1),:,:,:] = frozen_weights.data
for param in new_model.parameters():
param.data = param.data.clamp_(-1,1)
if (i+1) % 100 == 0:
print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch+1, 100, i+1, total_step, loss.item()))
# Test the model
# In the test phase, don't need to compute gradients (for memory efficiency)
new_model.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.to(device)
labels = labels.to(device)
outputs,_ = new_model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on test images: {} %'.format(100 * correct / total))
end_time = datetime.datetime.now()
total_time = (end_time-start_time).total_seconds()
print('total time: ' + str(total_time))