-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathlsd_toy.py
238 lines (191 loc) · 7.73 KB
/
lsd_toy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import torch
import torch.nn as nn
import torch.distributions as distributions
import torch.optim as optim
import networks
import argparse
import utils
import toy_data
import os
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import time
from visualize_flow import visualize_transform
from utils import HMCSampler
device = torch.device('cuda:' + str(0) if torch.cuda.is_available() else 'cpu')
def try_make_dirs(d):
if not os.path.exists(d):
os.makedirs(d)
def keep_grad(output, input, grad_outputs=None):
return torch.autograd.grad(output, input, grad_outputs=grad_outputs, retain_graph=True, create_graph=True)[0]
def sample_data(args, batch_size):
x = toy_data.inf_train_gen(args.data, batch_size=batch_size)
x = torch.from_numpy(x).type(torch.float32).to(device)
return x
def approx_jacobian_trace(fx, x):
eps = torch.randn_like(fx)
eps_dfdx = keep_grad(fx, x, grad_outputs=eps)
tr_dfdx = (eps_dfdx * eps).sum(-1)
return tr_dfdx
def exact_jacobian_trace(fx, x):
vals = []
for i in range(x.size(1)):
fxi = fx[:, i]
dfxi_dxi = keep_grad(fxi.sum(), x)[:, i][:, None]
vals.append(dfxi_dxi)
vals = torch.cat(vals, dim=1)
return vals.sum(dim=1)
class EBM(nn.Module):
def __init__(self, net, base_dist=None):
super(EBM, self).__init__()
self.net = net
if base_dist is not None:
self.base_mu = nn.Parameter(base_dist.loc)
self.base_logstd = nn.Parameter(base_dist.scale.log())
else:
self.base_mu = None
self.base_logstd = None
def forward(self, x):
if self.base_mu is None:
bd = 0
else:
base_dist = distributions.Normal(self.base_mu, self.base_logstd.exp())
bd = base_dist.log_prob(x).view(x.size(0), -1).sum(1)
return self.net(x) + bd
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
'--data',
choices=['swissroll', '8gaussians', 'pinwheel', 'circles', 'moons',
'2spirals', 'checkerboard', 'rings'],
type=str, default='moons'
)
parser.add_argument('--niters', type=int, default=10000)
parser.add_argument('--batch_size', type=int, default=100)
parser.add_argument('--test_batch_size', type=int, default=1000)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--weight_decay', type=float, default=0)
parser.add_argument('--critic_weight_decay', type=float, default=0)
parser.add_argument('--save', type=str, default='/tmp/test_lsd')
parser.add_argument('--mode', type=str, default="lsd", choices=['lsd', 'sm'])
parser.add_argument('--viz_freq', type=int, default=100)
parser.add_argument('--save_freq', type=int, default=10000)
parser.add_argument('--log_freq', type=int, default=100)
parser.add_argument('--base_dist', action="store_true")
parser.add_argument('--c_iters', type=int, default=5)
parser.add_argument('--l2', type=float, default=10.)
parser.add_argument('--exact_trace', action="store_true")
parser.add_argument('--n_steps', type=int, default=10)
args = parser.parse_args()
# logger
utils.makedirs(args.save)
logger = utils.get_logger(logpath=os.path.join(args.save, 'logs'), filepath=os.path.abspath(__file__))
logger.info(args)
# fit a gaussian to the training data
init_size = 1000
init_batch = sample_data(args, init_size).requires_grad_()
mu, std = init_batch.mean(0), init_batch.std(0)
base_dist = distributions.Normal(mu, std)
# neural netz
critic = networks.SmallMLP(2, n_out=2)
net = networks.SmallMLP(2)
ebm = EBM(net, base_dist if args.base_dist else None)
ebm.to(device)
critic.to(device)
# for sampling
init_fn = lambda: base_dist.sample_n(args.test_batch_size)
cov = utils.cov(init_batch)
sampler = HMCSampler(ebm, .3, 5, init_fn, device=device, covariance_matrix=cov)
logger.info(ebm)
logger.info(critic)
# optimizers
optimizer = optim.Adam(ebm.parameters(), lr=args.lr, weight_decay=args.weight_decay, betas=(.0, .999))
critic_optimizer = optim.Adam(critic.parameters(), lr=args.lr, betas=(.0, .999),
weight_decay=args.critic_weight_decay)
time_meter = utils.RunningAverageMeter(0.98)
loss_meter = utils.RunningAverageMeter(0.98)
ebm.train()
end = time.time()
for itr in range(args.niters):
optimizer.zero_grad()
critic_optimizer.zero_grad()
x = sample_data(args, args.batch_size)
x.requires_grad_()
if args.mode == "lsd":
# our method
# compute dlogp(x)/dx
logp_u = ebm(x)
sq = keep_grad(logp_u.sum(), x)
fx = critic(x)
# compute (dlogp(x)/dx)^T * f(x)
sq_fx = (sq * fx).sum(-1)
# compute/estimate Tr(df/dx)
if args.exact_trace:
tr_dfdx = exact_jacobian_trace(fx, x)
else:
tr_dfdx = approx_jacobian_trace(fx, x)
stats = (sq_fx + tr_dfdx)
loss = stats.mean() # estimate of S(p, q)
l2_penalty = (fx * fx).sum(1).mean() * args.l2 # penalty to enforce f \in F
# adversarial!
if args.c_iters > 0 and itr % (args.c_iters + 1) != 0:
(-1. * loss + l2_penalty).backward()
critic_optimizer.step()
else:
loss.backward()
optimizer.step()
elif args.mode == "sm":
# score matching for reference
fx = ebm(x)
dfdx = torch.autograd.grad(fx.sum(), x, retain_graph=True, create_graph=True)[0]
eps = torch.randn_like(dfdx) # use hutchinson here as well
epsH = torch.autograd.grad(dfdx, x, grad_outputs=eps, create_graph=True, retain_graph=True)[0]
trH = (epsH * eps).sum(1)
norm_s = (dfdx * dfdx).sum(1)
loss = (trH + .5 * norm_s).mean()
loss.backward()
optimizer.step()
else:
assert False
loss_meter.update(loss.item())
time_meter.update(time.time() - end)
if itr % args.log_freq == 0:
log_message = (
'Iter {:04d} | Time {:.4f}({:.4f}) | Loss {:.4f}({:.4f})'.format(
itr, time_meter.val, time_meter.avg, loss_meter.val, loss_meter.avg
)
)
logger.info(log_message)
if itr % args.save_freq == 0 or itr == args.niters:
ebm.cpu()
utils.makedirs(args.save)
torch.save({
'args': args,
'state_dict': ebm.state_dict(),
}, os.path.join(args.save, 'checkpt.pth'))
ebm.to(device)
if itr % args.viz_freq == 0:
# plot dat
plt.clf()
npts = 100
p_samples = toy_data.inf_train_gen(args.data, batch_size=npts ** 2)
q_samples = sampler.sample(args.n_steps)
ebm.cpu()
x_enc = critic(x)
xes = x_enc.detach().cpu().numpy()
trans = xes.min()
scale = xes.max() - xes.min()
xes = (xes - trans) / scale * 8 - 4
plt.figure(figsize=(4, 4))
visualize_transform([p_samples, q_samples.detach().cpu().numpy(), xes], ["data", "model", "embed"],
[ebm], ["model"], npts=npts)
fig_filename = os.path.join(args.save, 'figs', '{:04d}.png'.format(itr))
utils.makedirs(os.path.dirname(fig_filename))
plt.savefig(fig_filename)
plt.close()
ebm.to(device)
end = time.time()
logger.info('Training has finished, can I get a yeet?')
if __name__ == "__main__":
main()