-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathlsd_mnist.py
377 lines (316 loc) · 14.7 KB
/
lsd_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import torch
import torch.nn as nn
import torch.distributions as distributions
import torch.optim as optim
import numpy as np
import networks
import argparse
import utils
import os
import matplotlib
matplotlib.use('Agg')
import time
import torch.nn.utils.spectral_norm as spectral_norm
from torch.utils.data import DataLoader
import torchvision as tv
import torchvision.transforms as tr
from lsd_test import GaussianBernoulliRBM
device = torch.device('cuda:' + str(0) if torch.cuda.is_available() else 'cpu')
def logit(x, alpha=1e-6):
x = x * (1 - 2 * alpha) + alpha
return torch.log(x) - torch.log(1 - x)
def get_data(args):
if args.data_type == "continuous":
if args.logit:
transform = tr.Compose([tr.ToTensor(), lambda x: x * (255. / 256.) + (torch.rand_like(x) / 256.), logit])
else:
transform = tr.Compose([tr.ToTensor(), lambda x: x * (255. / 256.) + (torch.rand_like(x) / 256.)])
else:
transform = tr.Compose([tr.ToTensor(), lambda x: (x > .5).float()])
if args.data == "mnist":
dset_train = tv.datasets.MNIST(root="../data", train=True, transform=transform, download=True)
dset_test = tv.datasets.MNIST(root="../data", train=False, transform=transform, download=True)
elif args.data == "fashionmnist":
dset_train = tv.datasets.FashionMNIST(root="../data", train=True, transform=transform, download=True)
dset_test = tv.datasets.FashionMNIST(root="../data", train=False, transform=transform, download=True)
else:
assert False, "BAD BOI"
dload_train = DataLoader(dset_train, batch_size=args.batch_size, shuffle=True, num_workers=4, drop_last=True)
dload_test = DataLoader(dset_test, batch_size=args.batch_size, shuffle=True, num_workers=4, drop_last=True)
return dload_train, dload_test
def keep_grad(output, input, grad_outputs=None):
return torch.autograd.grad(output, input, grad_outputs=grad_outputs, retain_graph=True, create_graph=True)[0]
def apply_spectral_norm(module):
if 'weight' in module._parameters:
spectral_norm(module)
print("applying sn")
class EBM(nn.Module):
def __init__(self, net, base_dist=None, learn_base_dist=True):
super(EBM, self).__init__()
self.net = net
if base_dist is not None:
self.base_mu = nn.Parameter(base_dist.loc, requires_grad=learn_base_dist)
self.base_logstd = nn.Parameter(base_dist.scale.log(), requires_grad=learn_base_dist)
self.base_logweight = nn.Parameter(base_dist.scale.mean() * 0., requires_grad=learn_base_dist)
else:
self.base_mu = None
self.base_logstd = None
def forward(self, x, lp=False):
if self.base_mu is None:
bd = 0
else:
base_dist = distributions.Normal(self.base_mu, self.base_logstd.exp())
bd = base_dist.log_prob(x).view(x.size(0), -1).sum(1)
net = self.net(x)
if lp:
return net + bd, net
else:
return net + bd
def sample(self, x_init, l=1., e=.01, n_steps=100, anneal=None):
x_k = torch.autograd.Variable(x_init, requires_grad=True)
# sgld
if anneal == "lin":
lrs = list(reversed(np.linspace(e, l, n_steps)))
elif anneal == "log":
lrs = np.logspace(np.log10(l), np.log10(e))
else:
lrs = [l for _ in range(n_steps)]
for this_lr in lrs:
f_prime = torch.autograd.grad(self(x_k).sum(), [x_k], retain_graph=True)[0]
x_k.data += this_lr * f_prime + torch.randn_like(x_k) * e
final_samples = x_k.detach()
return final_samples
def approx_jacobian_trace(fx, x):
eps = torch.randn_like(fx)
eps_dfdx = keep_grad(fx, x, grad_outputs=eps)
tr_dfdx = (eps_dfdx * eps).sum(-1)
return tr_dfdx
def exact_jacobian_trace(fx, x):
vals = []
for i in range(x.size(1)):
fxi = fx[:, i]
dfxi_dxi = keep_grad(fxi.sum(), x)[:, i][:, None]
vals.append(dfxi_dxi)
vals = torch.cat(vals, dim=1)
return vals.sum(dim=1)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--data', choices=['mnist', 'fashionmnist'], type=str, default='mnist')
parser.add_argument('--niters', type=int, default=100001)
parser.add_argument('--batch_size', type=int, default=100)
parser.add_argument('--test_batch_size', type=int, default=1000)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--l2', type=float, default=.5)
parser.add_argument('--grad_l2', type=float, default=0.)
parser.add_argument('--weight_decay', type=float, default=0)
parser.add_argument('--save', type=str, default='/tmp/test_ksd')
parser.add_argument('--load', type=str)
parser.add_argument('--viz_freq', type=int, default=100)
parser.add_argument('--save_freq', type=int, default=10000)
parser.add_argument('--log_freq', type=int, default=100)
parser.add_argument('--base_dist', action="store_true")
parser.add_argument('--fixed_base_dist', action="store_true")
parser.add_argument('--k_iters', type=int, default=1)
parser.add_argument('--e_iters', type=int, default=1)
parser.add_argument('--hidden_dim', type=int, default=1000)
parser.add_argument('--logit', action="store_true")
parser.add_argument('--data_type', type=str, default="continuous", choices=["continuous", "binary"])
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--z_dim', type=int, default=32)
parser.add_argument('--n_steps', type=int, default=1000)
parser.add_argument('--n_samples', type=int, default=1)
parser.add_argument('--quadratic', action="store_true")
parser.add_argument('--data_init', action="store_true")
parser.add_argument('--full_rank_mass', action="store_true")
parser.add_argument('--dropout', action="store_true")
parser.add_argument('--exact_trace', action="store_true")
parser.add_argument('--t_scaled', action="store_true")
parser.add_argument('--both_scaled', action="store_true")
parser.add_argument('--rbm', action="store_true")
parser.add_argument('--grad_crit', action="store_true")
parser.add_argument('--e_squared', action="store_true")
parser.add_argument('--t_squared', action="store_true")
parser.add_argument('--tanh', action="store_true")
parser.add_argument('--num_const', type=float, default=1e-6)
parser.add_argument('--burn_in', type=int, default=2000)
parser.add_argument('--arch', default='mlp', choices=["mlp", "mlp-large"])
args = parser.parse_args()
if args.data == "mnist" or args.data == "fashionmnist":
args.data_dim = 784
args.data_shape = (1, 28, 28)
sqrt = lambda x: int(torch.sqrt(torch.Tensor([x])))
plot = lambda p, x: tv.utils.save_image(x.clamp(0, 1), p, normalize=False, nrow=sqrt(x.size(0)))
dload_train, dload_test = get_data(args)
# logger
utils.makedirs(args.save)
logger = utils.get_logger(logpath=os.path.join(args.save, 'logs'), filepath=os.path.abspath(__file__))
logger.info(args)
if args.arch == "mlp":
if args.quadratic:
net = networks.QuadraticMLP(args.data_dim, n_hid=args.hidden_dim)
else:
net = networks.SmallMLP(args.data_dim, n_hid=args.hidden_dim, dropout=args.dropout)
critic = networks.SmallMLP(args.data_dim, n_out=args.data_dim,
n_hid=args.hidden_dim, dropout=args.dropout)
elif args.arch == "mlp-large":
net = networks.LargeMLP(args.data_dim, n_hid=args.hidden_dim, dropout=args.dropout)
critic = networks.LargeMLP(args.data_dim, n_out=args.data_dim,
n_hid=args.hidden_dim, dropout=args.dropout)
else:
assert False
if args.tanh:
critic = nn.Sequential(critic, nn.Tanh())
for x, _ in dload_train:
init_batch = x.view(x.size(0), -1)
break
mu, std = init_batch.mean(), init_batch.std() + 1.
if args.fixed_base_dist:
mu = torch.ones_like(mu) * init_batch.mean()
std = torch.ones_like(std) * init_batch.std()
print(init_batch.mean(), init_batch.std(), init_batch.min(), init_batch.max())
base_dist = distributions.Normal(mu, std)
if args.rbm:
B = torch.randn((args.data_dim, args.hidden_dim)) / args.hidden_dim
c = torch.randn((1, args.hidden_dim))
b = init_batch.mean(0)[None, :]
ebm = GaussianBernoulliRBM(B, b, c, burn_in=args.burn_in)
else:
ebm = EBM(net, base_dist if args.base_dist else None, learn_base_dist=not args.fixed_base_dist)
if args.load is not None:
ckpt = torch.load(args.load)
ebm.load_state_dict(ckpt['ebm_state_dict'])
critic.load_state_dict(ckpt['critic_state_dict'])
models = [ebm, critic]
def cpu():
for model in models:
model.cpu()
def gpu():
for model in models:
model.to(device)
gpu()
logger.info(ebm)
logger.info(critic)
if args.logit:
init_fn = lambda: logit(torch.rand((args.batch_size, args.data_dim)))
else:
init_fn = lambda: torch.rand((args.batch_size, args.data_dim))
optimizer = optim.Adam(ebm.parameters(), lr=args.lr, weight_decay=args.weight_decay, betas=(.0, .9))
critic_optimizer = optim.Adam(critic.parameters(), lr=args.lr, weight_decay=args.weight_decay, betas=(.0, .9))
time_meter = utils.RunningAverageMeter(0.98)
loss_meter = utils.RunningAverageMeter(0.98)
ebm_meter = utils.RunningAverageMeter(0.98)
best_loss = float('inf')
ebm.train()
critic.train()
end = time.time()
def stein_stats(distribution, x, critic):
if args.rbm:
sq = distribution.score_function(x)
else:
logp_u, lp = distribution(x, lp=True)
sq = keep_grad(logp_u.sum(), x)
fx = critic(x)
sq_fx = (sq * fx).sum(-1)
if args.exact_trace:
tr_dfdx = exact_jacobian_trace(fx, x)
else:
tr_dfdx = torch.cat([approx_jacobian_trace(fx, x)[:, None] for _ in range(args.n_samples)], dim=1).mean(
dim=1)
stats = sq_fx + tr_dfdx
norms = (fx * fx).sum(1)
grad_norms = (sq * sq).view(x.size(0), -1).sum(1)
return stats, norms, grad_norms, lp
static_init = init_fn().to(device)
itr = 0
for epoch in range(args.epochs):
for _itr, (x, _) in enumerate(dload_train):
x = x.view(x.size(0), -1)
x = x.to(device)
optimizer.zero_grad()
critic_optimizer.zero_grad()
x.requires_grad_()
# ebm training
stats, norms, grad_norms, logp_u = stein_stats(ebm, x, critic)
loss = stats.mean() + .001 * (logp_u ** 2).mean()
l2_penalty = norms.mean() * args.l2
grad_norm_penalty = grad_norms.mean() * args.grad_l2
cycle_iter = itr % (args.k_iters + args.e_iters)
if cycle_iter < args.k_iters:
if args.t_scaled or args.both_scaled:
(-1. * loss / (stats.std() + args.num_const) + l2_penalty).backward()
elif args.t_squared:
(stats.var() - (stats ** 2).mean() + l2_penalty).backward()
else:
(-1. * loss + l2_penalty).backward()
critic_optimizer.step()
else:
if args.both_scaled:
(loss / (stats.std() + args.num_const) + grad_norm_penalty).backward()
elif args.e_squared:
((stats ** 2).mean()).backward()
else:
(loss + grad_norm_penalty).backward()
optimizer.step()
optimizer.zero_grad()
critic_optimizer.zero_grad()
# sampler training
z = torch.randn((args.batch_size, args.z_dim)).to(device)
loss_meter.update(loss.item())
time_meter.update(time.time() - end)
if itr % args.log_freq == 0:
log_message = (
'Iter {:04d} | Time {:.4f}({:.4f}) | Loss {:.6f}({:.6f}) +/- {:.6f}, logp_u: {} +/- {}'.format(
itr, time_meter.val, time_meter.avg, loss_meter.val, loss_meter.avg, stats.std(),
logp_u.mean().item(), logp_u.std().item()
)
)
logger.info(log_message)
if itr % args.save_freq == 0 or itr == args.niters:
cpu()
utils.makedirs(args.save)
torch.save({
'args': args,
'ebm_state_dict': ebm.state_dict(),
'critic_state_dict': critic.state_dict()
}, os.path.join(args.save, 'checkpt.pth'))
gpu()
critic.eval()
ebm.eval()
if itr % args.viz_freq == 0 and itr > 0:
npts = 100
p_samples = x.view(x.size(0), *args.data_shape)
pp = "{}/x_p_{}_{}.png".format(os.path.join(args.save, "figs"), epoch, itr)
utils.makedirs(os.path.dirname(pp))
if args.logit:
plot(pp, torch.sigmoid(p_samples.cpu()))
else:
plot(pp, p_samples.cpu())
if args.rbm:
q_samples = ebm.sample(args.batch_size)
q_samples = q_samples.view(q_samples.size(0), 1, 28, 28)
pq = "{}/x_q_{}_{}.png".format(os.path.join(args.save, "figs"), epoch, itr)
if args.logit:
plot(pq, torch.sigmoid(q_samples.cpu()))
else:
plot(pq, q_samples.cpu())
else:
for e in [.01, .1, .22]:
for l in [.1, 1., 10.]:
for n in [30, 100, 300]:
static_init = init_fn().to(device)
q_samples = ebm.sample(static_init, l, e, n)
q_samples = q_samples.view(q_samples.size(0), 1, 28, 28)
pq = "{}/x_q_{}_{}___{}_{}_{}_rand.png".format(os.path.join(args.save, "figs"),
epoch, itr, l, e, n)
if args.logit:
plot(pq, torch.sigmoid(q_samples.cpu()))
else:
plot(pq, q_samples.cpu())
x_c = critic(x).view(x.size(0), 1, 28, 28)
pc = "{}/x_c_{}_{}.png".format(os.path.join(args.save, "figs"), epoch, itr)
plot(pc, x_c.cpu())
critic.train()
ebm.train()
end = time.time()
itr += 1
logger.info('Training has finished.')