-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathais.py
84 lines (63 loc) · 2.25 KB
/
ais.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import torch
import torch.nn as nn
import numpy as np
from tqdm import tqdm
class AISModel(nn.Module):
def __init__(self, model, init_dist):
super().__init__()
self.model = model
self.init_dist = init_dist
def forward(self, x, beta):
logpx = self.model(x).squeeze()
logpi = self.init_dist.log_prob(x).sum(-1)
return logpx * beta + logpi * (1. - beta)
def evaluate(model, init_dist, sampler,
train_loader, val_loader, test_loader,
preprocess, device,
n_iters, n_samples, steps_per_iter=1, viz_every=100):
model = AISModel(model, init_dist)
# move to cuda
model.to(device)
# annealing weights
betas = np.linspace(0., 1., n_iters)
samples = init_dist.sample((n_samples,))
log_w = torch.zeros((n_samples,)).to(device)
gen_samples = []
for itr, beta_k in tqdm(enumerate(betas)):
if itr == 0:
continue # skip 0
beta_km1 = betas[itr - 1]
# udpate importance weights
with torch.no_grad():
log_w = log_w + model(samples, beta_k) - model(samples, beta_km1)
# update samples
model_k = lambda x: model(x, beta=beta_k)
for d in range(steps_per_iter):
samples = sampler.step(samples.detach(), model_k).detach()
if (itr + 1) % viz_every == 0:
gen_samples.append(samples.cpu().detach())
logZ_final = log_w.logsumexp(0) - np.log(n_samples)
print("Final log(Z) = {:.4f}".format(logZ_final))
model = model.model
logps = []
for x, _ in train_loader:
x = preprocess(x.to(device))
logp_x = model(x).squeeze().detach()
logps.append(logp_x)
logps = torch.cat(logps)
train_ll = logps.mean() - logZ_final
logps = []
for x, _ in val_loader:
x = preprocess(x.to(device))
logp_x = model(x).squeeze().detach()
logps.append(logp_x)
logps = torch.cat(logps)
val_ll = logps.mean() - logZ_final
logps = []
for x, _ in test_loader:
x = preprocess(x.to(device))
logp_x = model(x).squeeze().detach()
logps.append(logp_x)
logps = torch.cat(logps)
test_ll = logps.mean() - logZ_final
return logZ_final, train_ll, val_ll, test_ll, gen_samples