-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
train.py
228 lines (178 loc) · 7.94 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# train.py
#!/usr/bin/env python3
""" train network using pytorch
author baiyu
"""
import os
import sys
import argparse
import time
from datetime import datetime
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from conf import settings
from utils import get_network, get_training_dataloader, get_test_dataloader, WarmUpLR, \
most_recent_folder, most_recent_weights, last_epoch, best_acc_weights
def train(epoch):
start = time.time()
net.train()
for batch_index, (images, labels) in enumerate(cifar100_training_loader):
if args.gpu:
labels = labels.cuda()
images = images.cuda()
optimizer.zero_grad()
outputs = net(images)
loss = loss_function(outputs, labels)
loss.backward()
optimizer.step()
n_iter = (epoch - 1) * len(cifar100_training_loader) + batch_index + 1
last_layer = list(net.children())[-1]
for name, para in last_layer.named_parameters():
if 'weight' in name:
writer.add_scalar('LastLayerGradients/grad_norm2_weights', para.grad.norm(), n_iter)
if 'bias' in name:
writer.add_scalar('LastLayerGradients/grad_norm2_bias', para.grad.norm(), n_iter)
print('Training Epoch: {epoch} [{trained_samples}/{total_samples}]\tLoss: {:0.4f}\tLR: {:0.6f}'.format(
loss.item(),
optimizer.param_groups[0]['lr'],
epoch=epoch,
trained_samples=batch_index * args.b + len(images),
total_samples=len(cifar100_training_loader.dataset)
))
#update training loss for each iteration
writer.add_scalar('Train/loss', loss.item(), n_iter)
if epoch <= args.warm:
warmup_scheduler.step()
for name, param in net.named_parameters():
layer, attr = os.path.splitext(name)
attr = attr[1:]
writer.add_histogram("{}/{}".format(layer, attr), param, epoch)
finish = time.time()
print('epoch {} training time consumed: {:.2f}s'.format(epoch, finish - start))
@torch.no_grad()
def eval_training(epoch=0, tb=True):
start = time.time()
net.eval()
test_loss = 0.0 # cost function error
correct = 0.0
for (images, labels) in cifar100_test_loader:
if args.gpu:
images = images.cuda()
labels = labels.cuda()
outputs = net(images)
loss = loss_function(outputs, labels)
test_loss += loss.item()
_, preds = outputs.max(1)
correct += preds.eq(labels).sum()
finish = time.time()
if args.gpu:
print('GPU INFO.....')
print(torch.cuda.memory_summary(), end='')
print('Evaluating Network.....')
print('Test set: Epoch: {}, Average loss: {:.4f}, Accuracy: {:.4f}, Time consumed:{:.2f}s'.format(
epoch,
test_loss / len(cifar100_test_loader.dataset),
correct.float() / len(cifar100_test_loader.dataset),
finish - start
))
print()
#add informations to tensorboard
if tb:
writer.add_scalar('Test/Average loss', test_loss / len(cifar100_test_loader.dataset), epoch)
writer.add_scalar('Test/Accuracy', correct.float() / len(cifar100_test_loader.dataset), epoch)
return correct.float() / len(cifar100_test_loader.dataset)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-net', type=str, required=True, help='net type')
parser.add_argument('-gpu', action='store_true', default=False, help='use gpu or not')
parser.add_argument('-b', type=int, default=128, help='batch size for dataloader')
parser.add_argument('-warm', type=int, default=1, help='warm up training phase')
parser.add_argument('-lr', type=float, default=0.1, help='initial learning rate')
parser.add_argument('-resume', action='store_true', default=False, help='resume training')
args = parser.parse_args()
net = get_network(args)
#data preprocessing:
cifar100_training_loader = get_training_dataloader(
settings.CIFAR100_TRAIN_MEAN,
settings.CIFAR100_TRAIN_STD,
num_workers=4,
batch_size=args.b,
shuffle=True
)
cifar100_test_loader = get_test_dataloader(
settings.CIFAR100_TRAIN_MEAN,
settings.CIFAR100_TRAIN_STD,
num_workers=4,
batch_size=args.b,
shuffle=True
)
loss_function = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
train_scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=settings.MILESTONES, gamma=0.2) #learning rate decay
iter_per_epoch = len(cifar100_training_loader)
warmup_scheduler = WarmUpLR(optimizer, iter_per_epoch * args.warm)
if args.resume:
recent_folder = most_recent_folder(os.path.join(settings.CHECKPOINT_PATH, args.net), fmt=settings.DATE_FORMAT)
if not recent_folder:
raise Exception('no recent folder were found')
checkpoint_path = os.path.join(settings.CHECKPOINT_PATH, args.net, recent_folder)
else:
checkpoint_path = os.path.join(settings.CHECKPOINT_PATH, args.net, settings.TIME_NOW)
#use tensorboard
if not os.path.exists(settings.LOG_DIR):
os.mkdir(settings.LOG_DIR)
#since tensorboard can't overwrite old values
#so the only way is to create a new tensorboard log
writer = SummaryWriter(log_dir=os.path.join(
settings.LOG_DIR, args.net, settings.TIME_NOW))
input_tensor = torch.Tensor(1, 3, 32, 32)
if args.gpu:
input_tensor = input_tensor.cuda()
writer.add_graph(net, input_tensor)
#create checkpoint folder to save model
if not os.path.exists(checkpoint_path):
os.makedirs(checkpoint_path)
checkpoint_path = os.path.join(checkpoint_path, '{net}-{epoch}-{type}.pth')
best_acc = 0.0
if args.resume:
best_weights = best_acc_weights(os.path.join(settings.CHECKPOINT_PATH, args.net, recent_folder))
if best_weights:
weights_path = os.path.join(settings.CHECKPOINT_PATH, args.net, recent_folder, best_weights)
print('found best acc weights file:{}'.format(weights_path))
print('load best training file to test acc...')
net.load_state_dict(torch.load(weights_path))
best_acc = eval_training(tb=False)
print('best acc is {:0.2f}'.format(best_acc))
recent_weights_file = most_recent_weights(os.path.join(settings.CHECKPOINT_PATH, args.net, recent_folder))
if not recent_weights_file:
raise Exception('no recent weights file were found')
weights_path = os.path.join(settings.CHECKPOINT_PATH, args.net, recent_folder, recent_weights_file)
print('loading weights file {} to resume training.....'.format(weights_path))
net.load_state_dict(torch.load(weights_path))
resume_epoch = last_epoch(os.path.join(settings.CHECKPOINT_PATH, args.net, recent_folder))
for epoch in range(1, settings.EPOCH + 1):
if epoch > args.warm:
train_scheduler.step(epoch)
if args.resume:
if epoch <= resume_epoch:
continue
train(epoch)
acc = eval_training(epoch)
#start to save best performance model after learning rate decay to 0.01
if epoch > settings.MILESTONES[1] and best_acc < acc:
weights_path = checkpoint_path.format(net=args.net, epoch=epoch, type='best')
print('saving weights file to {}'.format(weights_path))
torch.save(net.state_dict(), weights_path)
best_acc = acc
continue
if not epoch % settings.SAVE_EPOCH:
weights_path = checkpoint_path.format(net=args.net, epoch=epoch, type='regular')
print('saving weights file to {}'.format(weights_path))
torch.save(net.state_dict(), weights_path)
writer.close()