forked from Angeliacs/learn-kubeflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsequential.py
53 lines (43 loc) · 1.51 KB
/
sequential.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#!/usr/bin/env python3
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import kfp
from kfp import dsl
def gcs_download_op(url):
return dsl.ContainerOp(
name='GCS - Download',
image='google/cloud-sdk:216.0.0',
command=['sh', '-c'],
arguments=['gsutil cat $0 | tee $1', url, '/tmp/results.txt'],
file_outputs={
'data': '/tmp/results.txt',
}
)
def echo_op(text):
return dsl.ContainerOp(
name='echo',
image='library/bash:4.4.23',
command=['sh', '-c'],
arguments=['echo "$0"', text]
)
@dsl.pipeline(
name='Sequential pipeline',
description='A pipeline with two sequential steps.'
)
def sequential_pipeline(url='gs://ml-pipeline-playground/shakespeare1.txt'):
"""A pipeline with two sequential steps."""
download_task = gcs_download_op(url)
echo_task = echo_op(download_task.output)
if __name__ == '__main__':
kfp.compiler.Compiler().compile(sequential_pipeline, __file__ + '.zip')