forked from vafeiadis/hahn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHahnTrace.v
772 lines (669 loc) · 24.9 KB
/
HahnTrace.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
(******************************************************************************)
(** * Lemmas about traces (finite or infinite sequences) *)
(******************************************************************************)
Require Import HahnBase HahnList HahnSets HahnRelationsBasic.
Require Import HahnOmega HahnWf.
Require Import Arith micromega.Lia IndefiniteDescription.
Set Implicit Arguments.
Lemma set_infinite_natE (s : nat -> Prop) (INF: ~ set_finite s) n :
exists m, s m /\ length (filterP s (List.seq 0 m)) = n.
Proof.
assert (IMP: forall findom, exists x, s x /\ ~ In x findom).
{ unfold set_finite in *; apply NNPP; intro X; clarify_not.
eapply INF; eexists; ins; apply NNPP; intro Y; eauto. }
apply functional_choice in IMP; destruct IMP as [nin IMP].
assert (exists m, s m /\ n <= length (filterP s (List.seq 0 m))).
{ induction n; desf.
1: exists (nin nil); split; [apply IMP | lia].
exists (nin (List.seq 0 (S m))); split; [apply IMP|].
rewrite seq_split0 with (a := m).
rewrite filterP_app, length_app; ins; desf; ins; lia.
specialize (IMP (List.seq 0 (S m))); desf.
rewrite in_seq0_iff in IMP0; lia. }
desf; rewrite Nat.le_lteq in *; desf; eauto.
clear - H0; induction m; ins.
replace (List.seq 0 0) with (@nil nat) in H0; ins; lia.
replace (S m) with (m + 1) in H0; try lia.
rewrite seq_add, filterP_app, length_app in H0; ins.
replace (List.seq m 1) with (m :: nil) in H0; ins; desf; ins.
1: rewrite Nat.add_1_r, Nat.lt_succ_r, Nat.le_lteq in *; desf; eauto.
rewrite Nat.add_0_r in *; eauto.
Qed.
(** Prepend a finite list to an infinite sequence *)
Definition trace_prepend A (l : list A) (fl : nat -> A) n :=
if Nat.ltb n (length l) then nth n l (fl 0)
else fl (n - length l).
(******************************************************************************)
(** Lemmas about [trace_prepend] *)
(******************************************************************************)
Lemma trace_prepend_fst A (l: list A) fl n (LT : n < length l) :
trace_prepend l fl n = nth n l (fl 0).
Proof.
unfold trace_prepend; desf; f_equal; lia.
Qed.
Lemma trace_prepend_fst0 A (l: list A) fl x :
trace_prepend (x :: l) fl 0 = x.
Proof.
ins.
Qed.
Lemma trace_prepend_snd A (l: list A) fl n :
trace_prepend l fl (length l + n) = fl n.
Proof.
unfold trace_prepend; desf; f_equal; lia.
Qed.
Lemma trace_prepend_snd0 A (l: list A) fl :
trace_prepend l fl (length l) = fl 0.
Proof.
unfold trace_prepend; desf; f_equal; lia.
Qed.
Lemma trace_prepend_app A (l l' : list A) fl :
trace_prepend (l ++ l') fl = trace_prepend l (trace_prepend l' fl).
Proof.
unfold trace_prepend; extensionality n.
rewrite length_app, nth_app; desf; try lia.
all: first [apply nth_indep | f_equal]; lia.
Qed.
#[export]
Hint Rewrite
filterP_app
length_app
trace_prepend_fst0
trace_prepend_snd
trace_prepend_snd0
trace_prepend_app : trace_prepends.
Lemma map_trace_prepend_geq A (l: list A) fl n (LT: length l <= n) :
map (trace_prepend l fl) (List.seq 0 n) =
l ++ map fl (List.seq 0 (n - length l)).
Proof.
unfold trace_prepend.
rewrite seq_split with (x := length l); ins.
rewrite map_app.
rewrite map_nth_seq with (d := fl 0); [|by ins; desf].
rewrite map_seq_shift with (g := fl) (b := 0); ins.
desf; try f_equal; lia.
Qed.
Lemma map_trace_prepend_lt A (l: list A) fl n (LT: n < length l) :
exists l' a l'',
l = l' ++ a :: l'' /\ length l' = n /\
map (trace_prepend l fl) (List.seq 0 n) = l'.
Proof.
unfold trace_prepend.
destruct (Nat.le_exists_sub n (length l)) as (p & X & _);
try lia.
rewrite Nat.add_comm in X.
apply length_eq_add in X; desf.
rewrite length_app in *; destruct l''; ins; try lia.
repeat eexists.
eapply map_nth_seq with (d := fl 0); ins; desf; try lia.
rewrite nth_app; desf; try lia.
Qed.
Lemma set_finite_prepend A (l : list A) (fl : nat -> A) (f : A -> Prop) :
set_finite (set_map (trace_prepend l fl) f) <-> set_finite (set_map fl f).
Proof.
unfold trace_prepend, set_finite, set_map.
split; ins; desf.
{ exists (map (fun x => x - length l) findom); intro y; ins.
rewrite in_map_iff.
specialize (H (y + length l)); desf; eauto; try lia.
exists (y + length l); rewrite Nat.add_sub in *; eauto. }
{ exists (List.seq 0 (length l) ++ map (fun x => x + length l) findom);
intro y; ins.
rewrite in_app_iff, in_seq0_iff, in_map_iff; desf; eauto.
apply H in IN.
right; eexists; split; eauto; lia.
}
Qed.
(******************************************************************************)
(** Finite or infinite traces of [A] elements. *)
(******************************************************************************)
Inductive trace (A : Type) : Type :=
| trace_fin (l : list A)
| trace_inf (fl : nat -> A).
Definition trace_finite A (t : trace A) :=
exists l, t = trace_fin l.
(** [trace_app] concatenates two traces *)
Definition trace_app A (t t' : trace A) :=
match t, t' with
| trace_fin l, trace_fin l' => trace_fin (l ++ l')
| trace_fin l, trace_inf f =>
trace_inf (trace_prepend l f)
| trace_inf f, _ => trace_inf f
end.
(** [trace_map f t] applies [f] to all the elements of [t] *)
Definition trace_map A B (f : A -> B) (t : trace A) : trace B :=
match t with
| trace_fin l => trace_fin (map f l)
| trace_inf fl => trace_inf (fun x => f (fl x))
end.
(** Returns the length of a trace *)
Definition trace_length A (t : trace A) : nat_omega :=
match t with
| trace_fin l => NOnum (length l)
| trace_inf fl => NOinfinity
end.
(** [trace_elems t] returns true iff [a] is an element of the trace [t] *)
Definition trace_elems A (t : trace A) :=
match t with
| trace_fin l => (fun a => In a l)
| trace_inf fl => (fun a => exists n, a = fl n)
end.
(** [trace_nth n t d] returns the [n]th element of trace [t]
or the default element [d], if [n] exceeds the trace's length. *)
Definition trace_nth (n : nat) A (t : trace A) (d : A) : A :=
match t with
| trace_fin l => nth n l d
| trace_inf fl => fl n
end.
(** [trace_filter f t] returns the sub-trace of [t] whose elements
satisfy the predicate [f]. *)
Definition trace_filter A (f : A -> Prop) (t : trace A) : trace A :=
match t with
| trace_fin l => trace_fin (filterP f l)
| trace_inf fl =>
let s := excluded_middle_informative (set_finite (set_map fl f)) in
match s with
| left FIN =>
let B := set_finite_nat_bounded FIN in
let n := proj1_sig (constructive_indefinite_description _ B) in
trace_fin (filterP f (map fl (List.seq 0 (S n))))
| right INF =>
trace_inf
(fun n =>
let H := set_infinite_natE INF n in
let H0 := constructive_indefinite_description _ H in
fl (proj1_sig H0))
end
end.
(** Is a trace a prefix of another trace? *)
Definition trace_prefix A (t t' : trace A) :=
match t, t' with
| trace_fin l, trace_fin l' => exists l'', l' = l ++ l''
| trace_fin l, trace_inf f => forall i (LLEN: i < length l) d, f i = nth i l d
| trace_inf f, trace_fin _ => False
| trace_inf f, trace_inf f' => forall x, f x = f' x
end.
(** Is the trace duplicate-free? *)
Definition trace_nodup A (t: trace A) :=
forall i j (LTi: i < j) (LTj: NOmega.lt_nat_l j (trace_length t)) d,
trace_nth i t d <> trace_nth j t d.
(** Is [e] before [e'] in the duplicate-free trace [t]? *)
Definition trace_order A (t: trace A) e e' :=
trace_nodup t /\
(exists i j, i < j /\ NOmega.lt_nat_l j (trace_length t)
/\ trace_nth i t e = e /\ trace_nth j t e = e').
(******************************************************************************)
(** Basic lemmas *)
(******************************************************************************)
Lemma trace_nth_indep (n : nat) A (t : trace A)
(LT : NOmega.lt_nat_l n (trace_length t)) (d d' : A) :
trace_nth n t d = trace_nth n t d'.
Proof.
destruct t; ins; desf; auto using nth_indep.
Qed.
Lemma trace_nth_in A (t : trace A) n
(LT : NOmega.lt_nat_l n (trace_length t)) d :
trace_elems t (trace_nth n t d).
Proof.
destruct t; ins; desf; eauto using nth_In.
Qed.
Global Hint Resolve trace_nth_in : hahn.
Lemma trace_in_nth A (t : trace A) a (IN : trace_elems t a) d :
exists n, NOmega.lt_nat_l n (trace_length t) /\
trace_nth n t d = a.
Proof.
destruct t; ins; desf; eauto using In_nth.
Qed.
Lemma trace_elems_nth A (t : trace A) d :
trace_elems t
≡₁ (⋃₁ n ∈ (fun n => NOmega.lt_nat_l n (trace_length t)),
eq (trace_nth n t d)).
Proof.
repeat autounfold with unfolderDb; intuition; desf;
eauto using trace_in_nth with hahn.
Qed.
Lemma trace_length_app A (t t' : trace A) :
trace_length (trace_app t t') =
NOmega.add (trace_length t) (trace_length t').
Proof.
destruct t, t'; ins; auto using length_app.
Qed.
(** Lemmas about concatenation of traces *)
Lemma trace_in_app A (a : A) (t t' : trace A) :
trace_elems (trace_app t t') a <->
trace_elems t a \/ trace_length t <> NOinfinity /\ trace_elems t' a.
Proof.
split; destruct t, t'; ins; unfold trace_prepend in *;
desf; rewrite ?in_app_iff in *; desf;
eauto using nth_In; vauto.
all: try solve [right; split; ins; eauto].
apply In_nth with (d := fl 0) in H; desf; exists n; desf; ins.
exists (n + length l); desf; try f_equal; lia.
Qed.
Lemma trace_elems_app A (t t' : trace A) :
trace_elems (trace_app t t') ≡₁
trace_elems t ∪₁ ifP trace_finite t then trace_elems t' else ∅.
Proof.
unfold set_union, trace_finite; split; intro x;
rewrite trace_in_app; ins; desf; desf; ins; eauto.
destruct t; ins; destruct n; eauto.
right; ins.
Qed.
Lemma trace_nth_app (n : nat) A (t t' : trace A) (d : A) :
trace_nth n (trace_app t t') d =
ifP NOmega.lt_nat_l n (trace_length t) then trace_nth n t d
else trace_nth (NOmega.sub_nat_l n (trace_length t)) t' d.
Proof.
destruct t, t'; ins; unfold trace_prepend in *;
desf; try rewrite app_nth; desf;
auto using nth_indep; lia.
Qed.
Lemma trace_appA A (t t' t'' : trace A) :
trace_app (trace_app t t') t'' = trace_app t (trace_app t' t'').
Proof.
unfold trace_app; ins; desf; try by rewrite appA.
all: f_equal; extensionality x; desf.
by rewrite trace_prepend_app.
Qed.
Lemma trace_app_assoc A (t t' t'' : trace A) :
trace_app t (trace_app t' t'') = trace_app (trace_app t t') t''.
Proof.
symmetry; apply trace_appA.
Qed.
(** Lemmas about [trace_map] *)
Lemma trace_length_map A B (f : A -> B) (t : trace A) :
trace_length (trace_map f t) = trace_length t.
Proof.
destruct t; ins; eauto using length_map.
Qed.
Lemma trace_in_map A (a : A) B (f : B -> A) (t : trace B) :
trace_elems (trace_map f t) a <-> exists x, trace_elems t x /\ f x = a.
Proof.
destruct t; ins; try rewrite in_map_iff; split; ins; desf; eauto.
Qed.
Lemma trace_elems_map A B (f : B -> A) (t : trace B) :
trace_elems (trace_map f t) ≡₁ set_collect f (trace_elems t).
Proof.
unfold set_collect; split; intro x; destruct t; ins; desf;
try rewrite in_map_iff in *; desf; eauto.
Qed.
Lemma trace_nth_map (n : nat) A B (f : B -> A) (t : trace B) d :
trace_nth n (trace_map f t) (f d) = f (trace_nth n t d).
Proof.
destruct t; ins; apply map_nth.
Qed.
(** Lemmas about [trace_filter] *)
Lemma trace_in_filter A (a : A) (f : A -> Prop) (t : trace A) :
trace_elems (trace_filter f t) a <-> trace_elems t a /\ f a.
Proof.
destruct t; ins; desf; ins; rewrite ?in_filterP_iff, ?in_map_iff; ins.
all: split; ins; desf; splits; eauto.
all: try (eexists; try split; ins).
all: destruct (constructive_indefinite_description); ins; desf.
{ in_simp; apply l in H0; lia. }
revert a0.
instantiate (1 := length (filterP (fl ↓₁ f) (List.seq 0 n0))).
destruct (lt_eq_lt_dec x n0) as [[LT|]|LT]; desf.
unfold set_map.
all: rewrite (seq_split0 LT), filterP_app, length_app;
ins; desf; ins; lia.
Qed.
Lemma trace_elems_filter A (f : A -> Prop) (t : trace A) :
trace_elems (trace_filter f t) ≡₁ trace_elems t ∩₁ f.
Proof.
repeat autounfold with unfolderDb; split; ins.
all: rewrite trace_in_filter in *; desf.
Qed.
Lemma trace_filter_app A (f : A -> Prop) (t t' : trace A)
(IMP: trace_length (trace_filter f t) <> NOinfinity ->
trace_length t <> NOinfinity) :
trace_filter f (trace_app t t') =
trace_app (trace_filter f t)
(trace_filter f t').
Proof.
destruct t; ins; desf; ins; desf.
all: try solve [destruct IMP; ins]; clear IMP.
all: repeat destruct (constructive_indefinite_description); ins; desf.
all: try solve [exfalso; rewrite set_finite_prepend in *; ins].
by rewrite filterP_app in *.
{ unfold set_map in *.
destruct (le_lt_dec (length l) (S x)).
- rewrite map_trace_prepend_geq; ins.
unfold trace_prepend in *.
rewrite filterP_app.
do 2 f_equal.
eapply filterP_map_seq_eq; simpl; eauto.
ins; forward apply (l0 (length l + i)); desf; try lia.
2: ins; eapply l1 in H; lia.
replace (length l + i - length l) with i; ins; lia.
- eapply map_trace_prepend_lt with (fl := fl) in l2; desf.
rewrite l4, filterP_app, appA; clear l4.
f_equal.
symmetry; rewrite app_eq_prefix, app_eq_nil, ?filterP_eq_nil.
remember (a :: l'') as l; clear a l'' Heql.
split; ins.
apply in_split in IN; desf.
forward apply (l0 (length l' + length l2)); try lia.
by autorewrite with trace_prepends.
in_simp.
forward apply (l0 (length l' + (length l + x2))); try lia.
by autorewrite with trace_prepends.
}
{ f_equal; extensionality y; ins.
destruct (constructive_indefinite_description); ins; desf.
erewrite <- length_map, <- filterP_map.
destruct (le_lt_dec (length l) x) as [LE|LT].
{ rewrite map_trace_prepend_geq; ins.
autorewrite with trace_prepends.
rewrite filterP_map, length_map.
destruct (constructive_indefinite_description); ins; desf.
unfold set_map, trace_prepend in *; desf; try lia.
destruct (lt_eq_lt_dec (x - length l) x0) as [[LT|]|LT]; desf;
apply seq_split0 in LT; rewrite LT in *;
exfalso; revert a1; rewrite ?map_app, ?filterP_app, ?length_app;
ins; desf; ins; lia. }
eapply map_trace_prepend_lt with (fl := fl) in LT; desf.
rewrite filterP_app, LT1; red in a.
autorewrite with trace_prepends in *; ins; desf.
}
Qed.
Lemma trace_lt_length_filter A n t
(LT : NOmega.lt_nat_l n (trace_length t))
(f : A -> Prop) d (F : f (trace_nth n t d)) :
NOmega.lt_nat_l
(length
(filterP f
(map (fun i => trace_nth i t d) (List.seq 0 n))))
(trace_length (trace_filter f t)).
Proof.
destruct t; ins; desf; ins.
erewrite <- map_nth_seq
with (a := 0) (l := l)
(f := fun i => nth i l d) at 1; auto using app_nth1.
rewrite (seq_split0 LT), map_app, filterP_app, length_app; ins; desf; ins;
try lia.
destruct (IndefiniteDescription.constructive_indefinite_description);
ins; desf.
specialize (l _ F).
rewrite seqS, (seq_split0 l); ins.
rewrite !map_app, !filterP_app, !length_app; ins; desf; ins; desf.
all: rewrite <- !Nat.add_assoc; apply Nat.lt_add_pos_r; lia.
Qed.
Lemma trace_nth_filter A (f : A -> Prop) (t : trace A) i d
(LT : NOmega.lt_nat_l i (trace_length (trace_filter f t))) :
exists n, NOmega.lt_nat_l n (trace_length t)
/\ trace_nth i (trace_filter f t) d = trace_nth n t d
/\ i = length (filterP f (map (fun i => trace_nth i t d)
(List.seq 0 n))).
Proof.
destruct t; ins; desf; ins.
{ apply nth_filterP; ins. }
{
destruct (IndefiniteDescription.constructive_indefinite_description);
ins; desf.
apply nth_filterP with (d := d) in LT; desf.
rewrite map_length, seq_length in *; ins.
exists n; splits; try rewrite map_length, seq_length; ins.
rewrite LT0, nth_indep with (d' := fl 0); ins.
rewrite map_nth, seq_nth; ins.
rewrite map_length, seq_length; ins.
do 2 f_equal; apply map_ext_in; ins; in_simp.
rewrite nth_indep with (d' := fl 0); ins.
rewrite map_nth, seq_nth; ins; lia.
rewrite map_length, seq_length; ins; lia.
}
destruct set_infinite_natE with (n := i) as (m & F & NF).
exists m; desf.
destruct (IndefiniteDescription.constructive_indefinite_description);
ins; desf.
rewrite filterP_map, length_map; splits; ins.
clear LT; destruct (lt_eq_lt_dec x m) as [[LT|]|LT]; desf.
all: rewrite (seq_split0 LT), filterP_app, length_app in *; ins; desf;
ins; lia.
Qed.
Lemma trace_nth_filter' A (f : A -> Prop) (t : trace A) n d
(LT : NOmega.lt_nat_l n (trace_length t)) (F: f (trace_nth n t d)):
trace_nth (length (filterP f (map (fun i => trace_nth i t d)
(List.seq 0 n))))
(trace_filter f t) d = trace_nth n t d.
Proof.
destruct t; ins; desf; ins; eauto using nth_filterP'.
{
destruct (IndefiniteDescription.constructive_indefinite_description);
ins; desf.
clear LT; assert (LT := l _ F); ins.
rewrite seqS, (seq_split0 LT), appA, map_app, filterP_app.
rewrite app_nth2, Nat.sub_diag; ins; desf.
}
destruct (IndefiniteDescription.constructive_indefinite_description); ins.
destruct a as [F' LEQ].
rewrite filterP_map, length_map in *.
change (fun i => fl i) with fl in *.
clear LT; destruct (lt_eq_lt_dec x n) as [[LT|]|LT]; desf.
all: rewrite (seq_split0 LT), filterP_app, length_app in *; ins; desf;
ins; lia.
Qed.
(** Lemmas about [trace_prefix] *)
Lemma trace_prefix_app A (t t' : trace A) :
trace_prefix t (trace_app t t').
Proof.
destruct t, t'; ins; unfold trace_prepend;
desf; eauto using nth_indep; done.
Qed.
Lemma trace_prefixE A (t t' : trace A) :
trace_prefix t t' <-> exists t'', t' = trace_app t t''.
Proof.
split; ins; desf; eauto using trace_prefix_app.
destruct t, t'; ins; desf; desf.
- by eexists (trace_fin _).
- exists (trace_inf (fun x => fl (x + length l))).
unfold trace_prepend; f_equal; extensionality y; desf; eauto.
f_equal; lia.
- exists (trace_fin nil); f_equal; extensionality x; eauto.
Qed.
Lemma trace_prefix_refl A (t : trace A) :
trace_prefix t t.
Proof.
destruct t; ins; eauto using app_nil_end.
Qed.
Lemma trace_prefix_trans A (t t' t'' : trace A) :
trace_prefix t t' ->
trace_prefix t' t'' ->
trace_prefix t t''.
Proof.
destruct t, t', t''; ins; desf; try rewrite <- H0; eauto.
by rewrite appA; vauto.
forward apply H0 with (i := i) (d := d);
rewrite ?length_app, ?nth_app;
ins; desf; lia.
Qed.
(** No duplicates *)
Lemma trace_nodup_filter A (f : A -> Prop) (t : trace A) :
trace_nodup t -> trace_nodup (trace_filter f t).
Proof.
unfold trace_nodup; ins; desf.
red; intros.
forward eapply trace_nth_filter with (i := i) (d := d)
as (n & LTn & N); eauto with hahn.
forward eapply trace_nth_filter with (i := j) (d := d)
as (m & LTm & M); eauto with hahn.
desf.
destruct (lt_eq_lt_dec n m) as [[LT|]|LT]; desf; try lia;
eapply H with (d := d) in LT; congruence.
Qed.
Lemma trace_nodup_mapE A B (f : A -> B) (t : trace A) :
trace_nodup (trace_map f t) -> trace_nodup t.
Proof.
unfold trace_nodup; ins; desf.
intro; eapply H; try rewrite trace_length_map; eauto.
rewrite !trace_nth_map; eauto using f_equal.
Qed.
Lemma trace_nodup_inj A (t: trace A)
(ND: trace_nodup t)
i (LTi : NOmega.lt_nat_l i (trace_length t))
j (LTj : NOmega.lt_nat_l j (trace_length t)) d d'
(EQ: trace_nth i t d = trace_nth j t d') :
i = j.
Proof.
rewrite trace_nth_indep with (d := d) (d' := d') in EQ; ins.
destruct (lt_eq_lt_dec i j) as [[LT|]|LT]; ins.
all: exfalso; eapply ND; eauto.
Qed.
Lemma trace_nodup_filter_inj A (f : A -> Prop) t
(ND : trace_nodup (trace_filter f t))
n (Ln : NOmega.lt_nat_l n (trace_length t))
m (Lm : NOmega.lt_nat_l m (trace_length t))
d (EQ : trace_nth n t d = trace_nth m t d)
(EXT : f (trace_nth n t d)) :
n = m.
Proof.
assert (Em: f (trace_nth m t d)) by congruence.
rewrite <- trace_nth_filter'
with (n := m) (f := f) in EQ; ins.
rewrite <- trace_nth_filter'
with (n := n) (f := f) in EQ; ins; desf.
eapply trace_nodup_inj in EQ; ins;
try eapply trace_lt_length_filter; eauto.
destruct (lt_eq_lt_dec n m) as [[LT|]|LT]; desf.
all: rewrite (seq_split0 LT) in *.
all: rewrite map_app, filterP_app, length_app in *;
ins; desf; ins; lia.
Qed.
(** Lemmas about [trace_order] *)
Lemma trace_order_in1 A (t : trace A) a b :
trace_order t a b -> trace_elems t a.
Proof.
unfold trace_order; destruct t; ins; desf; ins; eauto.
rewrite <- H2; apply nth_In; lia.
Qed.
Lemma trace_order_in2 A (t : trace A) a b :
trace_order t a b -> trace_elems t b.
Proof.
unfold trace_order; destruct t; ins; desf; ins; eauto.
rewrite <- H2; apply nth_In; lia.
Qed.
Global Hint Immediate trace_order_in1 trace_order_in2 : hahn.
Lemma trace_order_total A (t : trace A) (ND : trace_nodup t) :
is_total (trace_elems t) (trace_order t).
Proof.
red; ins.
apply trace_in_nth with (d := a) in IWa; desf.
apply trace_in_nth with (d := a) in IWb; desf.
destruct (lt_eq_lt_dec n n0) as [[LT|]|LT]; desf; try congruence.
left; repeat eexists; eauto.
right; repeat eexists; eauto using trace_nth_indep.
rewrite trace_nth_indep with (d' := a); ins.
Qed.
Lemma trace_order_trans A (t : trace A) x y z :
trace_order t x y ->
trace_order t y z ->
trace_order t x z.
Proof.
unfold trace_order; splits; ins; desf.
rewrite trace_nth_indep with (d' := x) in *; ins; eauto.
2: destruct (trace_length t); ins; lia.
exists i0, j; splits; eauto.
destruct (le_lt_dec j0 i) as [|LT]; try lia.
exfalso; eapply H0; try apply LT; eauto.
Qed.
Lemma trace_order_irrefl A (t : trace A) x
(ORD: trace_order t x x) : False.
Proof.
unfold trace_order in *; ins; desf.
eapply ORD with (d := x); eauto; congruence.
Qed.
Lemma fsupp_trace_order A (t : trace A) :
fsupp (trace_order t).
Proof.
intro y.
tertium_non_datur (trace_elems t y).
2: exists nil; ins; eauto with hahn.
apply trace_in_nth with (d := y) in H; desc.
exists (map (fun i => trace_nth i t y) (List.seq 0 n)).
unfold trace_order; ins; desf.
ins; in_simp.
rewrite trace_nth_indep with (d' := x) in H0; ins.
apply trace_nodup_inj in H0; ins; desf.
exists i; rewrite trace_nth_indep with (d' := x);
splits; ins; in_simp; eauto with hahn.
Qed.
Lemma trace_order_nth_nth A (t : trace A)
n (LTn : NOmega.lt_nat_l n (trace_length t)) d
m (LTm : NOmega.lt_nat_l m (trace_length t)) d' :
trace_order t (trace_nth n t d) (trace_nth m t d') <->
trace_nodup t /\ n < m.
Proof.
unfold trace_order; split; ins; desf; splits; ins.
apply trace_nodup_inj in H2; ins; desf.
apply trace_nodup_inj in H3; ins; desf.
destruct (trace_length t); ins; lia.
exists n, m; splits; ins; auto using trace_nth_indep.
Qed.
Lemma exists_max (cond : nat -> Prop) n :
(forall m (LT : m < n), ~ cond m)
\/ exists m, m < n /\ cond m /\ forall j, m < j -> j < n -> ~ cond j.
Proof.
induction n; [left; ins; lia|].
tertium_non_datur (cond n).
right; exists n; splits; ins; lia.
desf; [left | right].
ins; rewrite Nat.lt_succ_r, Nat.le_lteq in *; desf; eauto.
exists m; splits; ins; eauto.
rewrite Nat.lt_succ_r, Nat.le_lteq in *; desf; eauto.
Qed.
(** Labelled transition system (LTS) *)
Record LTS (State Label : Type) : Type :=
{ LTS_init : State -> Prop ;
LTS_final : State -> Prop ;
LTS_step : State -> Label -> State -> Prop }.
Section LTS_traces.
Variable State : Type.
Variable Label : Type.
Variable lts : LTS State Label.
(** Traces generated by a labelled transition system *)
Definition LTS_trace (t : trace Label) :=
match t with
| trace_fin l =>
exists fl', LTS_init lts (fl' 0) /\
forall i (LLEN : i < length l) d,
LTS_step lts (fl' i) (nth i l d) (fl' (S i))
| trace_inf fl =>
exists fl', LTS_init lts (fl' 0) /\
forall i, LTS_step lts (fl' i) (fl i) (fl' (S i))
end.
Definition LTS_complete_trace (t : trace Label) :=
match t with
| trace_fin l =>
exists fl', LTS_init lts (fl' 0) /\
LTS_final lts (fl' 0) /\
forall i (LLEN : i < length l) d,
LTS_step lts (fl' i) (nth i l d) (fl' (S i))
| trace_inf fl =>
exists fl', LTS_init lts (fl' 0) /\
forall i, LTS_step lts (fl' i) (fl i) (fl' (S i))
end.
Lemma LTS_complete_trace_weaken t :
LTS_complete_trace t -> LTS_trace t.
Proof.
destruct t; ins; desf; eauto.
Qed.
Lemma LTS_trace_prefix_closed t t' :
LTS_trace t' -> trace_prefix t t' -> LTS_trace t.
Proof.
destruct t, t'; ins; desf; exists fl'; splits; ins.
all: specialize (H1 i); rewrite ?length_app in *.
all: specialize_full H1; try lia.
all: try rewrite nth_app in *; desf; eauto; try lia.
rewrite <- H0; ins.
rewrite H0; ins.
Qed.
Lemma LTS_traceE t (T : LTS_trace t) :
exists fl',
LTS_init lts (fl' 0) /\
(forall i (LTi : NOmega.lt_nat_l i (trace_length t)) d,
LTS_step lts (fl' i) (trace_nth i t d) (fl' (S i))).
Proof.
destruct t; ins; desf.
exists fl'; split; ins.
Qed.
End LTS_traces.
Global Hint Resolve fsupp_trace_order : hahn.